Create positional_encoding.py
Browse files- positional_encoding.py +110 -0
positional_encoding.py
ADDED
@@ -0,0 +1,110 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) Microsoft Corporation.
|
2 |
+
|
3 |
+
import math
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch import nn
|
7 |
+
|
8 |
+
from .spherical_armonics import SH as SH_analytic
|
9 |
+
|
10 |
+
|
11 |
+
class SphericalHarmonics(nn.Module):
|
12 |
+
"""
|
13 |
+
Spherical Harmonics locaiton encoder
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, legendre_polys: int = 10, harmonics_calculation="analytic"):
|
17 |
+
"""
|
18 |
+
legendre_polys: determines the number of legendre polynomials.
|
19 |
+
more polynomials lead more fine-grained resolutions
|
20 |
+
calculation of spherical harmonics:
|
21 |
+
analytic uses pre-computed equations. This is exact, but works only up to degree 50,
|
22 |
+
closed-form uses one equation but is computationally slower (especially for high degrees)
|
23 |
+
"""
|
24 |
+
super(SphericalHarmonics, self).__init__()
|
25 |
+
self.L, self.M = int(legendre_polys), int(legendre_polys)
|
26 |
+
self.embedding_dim = self.L * self.M
|
27 |
+
|
28 |
+
if harmonics_calculation == "closed-form":
|
29 |
+
self.SH = SH_closed_form
|
30 |
+
elif harmonics_calculation == "analytic":
|
31 |
+
self.SH = SH_analytic
|
32 |
+
|
33 |
+
def forward(self, lonlat):
|
34 |
+
lon, lat = lonlat[:, 0], lonlat[:, 1]
|
35 |
+
|
36 |
+
# convert degree to rad
|
37 |
+
phi = torch.deg2rad(lon + 180)
|
38 |
+
theta = torch.deg2rad(lat + 90)
|
39 |
+
"""
|
40 |
+
greater_than_50 = (lon > 50).any() or (lat > 50).any()
|
41 |
+
if greater_than_50:
|
42 |
+
SH = SH_closed_form
|
43 |
+
else:
|
44 |
+
SH = SH_analytic
|
45 |
+
"""
|
46 |
+
SH = self.SH
|
47 |
+
|
48 |
+
Y = []
|
49 |
+
for l in range(self.L):
|
50 |
+
for m in range(-l, l + 1):
|
51 |
+
y = SH(m, l, phi, theta)
|
52 |
+
if isinstance(y, float):
|
53 |
+
y = y * torch.ones_like(phi)
|
54 |
+
if y.isnan().any():
|
55 |
+
print(m, l, y)
|
56 |
+
Y.append(y)
|
57 |
+
|
58 |
+
return torch.stack(Y, dim=-1)
|
59 |
+
|
60 |
+
|
61 |
+
####################### Spherical Harmonics utilities ########################
|
62 |
+
# Code copied from https://github.com/BachiLi/redner/blob/master/pyredner/utils.py
|
63 |
+
# Code adapted from "Spherical Harmonic Lighting: The Gritty Details", Robin Green
|
64 |
+
# http://silviojemma.com/public/papers/lighting/spherical-harmonic-lighting.pdf
|
65 |
+
def associated_legendre_polynomial(l, m, x):
|
66 |
+
pmm = torch.ones_like(x)
|
67 |
+
if m > 0:
|
68 |
+
somx2 = torch.sqrt((1 - x) * (1 + x))
|
69 |
+
fact = 1.0
|
70 |
+
for i in range(1, m + 1):
|
71 |
+
pmm = pmm * (-fact) * somx2
|
72 |
+
fact += 2.0
|
73 |
+
if l == m:
|
74 |
+
return pmm
|
75 |
+
pmmp1 = x * (2.0 * m + 1.0) * pmm
|
76 |
+
if l == m + 1:
|
77 |
+
return pmmp1
|
78 |
+
pll = torch.zeros_like(x)
|
79 |
+
for ll in range(m + 2, l + 1):
|
80 |
+
pll = ((2.0 * ll - 1.0) * x * pmmp1 - (ll + m - 1.0) * pmm) / (ll - m)
|
81 |
+
pmm = pmmp1
|
82 |
+
pmmp1 = pll
|
83 |
+
return pll
|
84 |
+
|
85 |
+
|
86 |
+
def SH_renormalization(l, m):
|
87 |
+
return math.sqrt(
|
88 |
+
(2.0 * l + 1.0) * math.factorial(l - m) / (4 * math.pi * math.factorial(l + m))
|
89 |
+
)
|
90 |
+
|
91 |
+
|
92 |
+
def SH_closed_form(m, l, phi, theta):
|
93 |
+
if m == 0:
|
94 |
+
return SH_renormalization(l, m) * associated_legendre_polynomial(
|
95 |
+
l, m, torch.cos(theta)
|
96 |
+
)
|
97 |
+
elif m > 0:
|
98 |
+
return (
|
99 |
+
math.sqrt(2.0)
|
100 |
+
* SH_renormalization(l, m)
|
101 |
+
* torch.cos(m * phi)
|
102 |
+
* associated_legendre_polynomial(l, m, torch.cos(theta))
|
103 |
+
)
|
104 |
+
else:
|
105 |
+
return (
|
106 |
+
math.sqrt(2.0)
|
107 |
+
* SH_renormalization(l, -m)
|
108 |
+
* torch.sin(-m * phi)
|
109 |
+
* associated_legendre_polynomial(l, -m, torch.cos(theta))
|
110 |
+
)
|