Daemontatox commited on
Commit
23dcfc6
·
verified ·
1 Parent(s): d253f9e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +36 -6
README.md CHANGED
@@ -10,12 +10,42 @@ language:
10
  - en
11
  ---
12
 
13
- # Uploaded finetuned model
14
 
15
- - **Developed by:** Daemontatox
16
- - **License:** apache-2.0
17
- - **Finetuned from model :** unsloth/Llama-3.2-11B-Vision-Instruct
18
 
19
- This mllama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
 
 
 
 
 
20
 
21
- [<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
  - en
11
  ---
12
 
13
+ # **unsloth/Llama-3.2-11B-Vision-Instruct (Fine-Tuned)**
14
 
15
+ ## **Model Overview**
16
+ This model, fine-tuned from the `unsloth/Llama-3.2-11B-Vision-Instruct` base, is optimized for vision-language tasks with enhanced instruction-following capabilities. Fine-tuning was completed 2x faster using the [Unsloth](https://github.com/unslothai/unsloth) framework combined with Hugging Face's TRL library, ensuring efficient training while maintaining high performance.
 
17
 
18
+ ## **Key Information**
19
+ - **Developed by:** Daemontatox
20
+ - **Base Model:** `unsloth/Llama-3.2-11B-Vision-Instruct`
21
+ - **License:** Apache-2.0
22
+ - **Language:** English (`en`)
23
+ - **Frameworks Used:** Hugging Face Transformers, Unsloth, and TRL
24
 
25
+ ## **Performance and Use Cases**
26
+ This model is ideal for applications involving:
27
+ - Vision-based text generation and description tasks
28
+ - Instruction-following in multimodal contexts
29
+ - General-purpose text generation with enhanced reasoning
30
+
31
+ ### **Features**
32
+ - **2x Faster Training:** Leveraging the Unsloth framework for accelerated fine-tuning.
33
+ - **Multimodal Capabilities:** Enhanced to handle vision-language interactions.
34
+ - **Instruction Optimization:** Tailored for improved comprehension and execution of instructions.
35
+
36
+
37
+ ## **How to Use**
38
+
39
+ ### **Inference Example (Hugging Face Transformers)**
40
+
41
+ ```python
42
+ from transformers import AutoTokenizer, AutoModelForCausalLM
43
+
44
+ tokenizer = AutoTokenizer.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
45
+ model = AutoModelForCausalLM.from_pretrained("Daemontatox/finetuned-llama-3.2-vision-instruct")
46
+
47
+ input_text = "Describe the image showing a sunset over mountains."
48
+ inputs = tokenizer(input_text, return_tensors="pt")
49
+ outputs = model.generate(**inputs, max_length=100)
50
+
51
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))