File size: 7,159 Bytes
0e8271d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
---
base_model:
  - Wan-AI/Wan2.2-I2V-A14B
base_model_relation: quantized
pipeline_tag: image-to-video
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---

# DFloat11 Compressed Model: `Wan-AI/Wan2.2-I2V-A14B`

This is a **DFloat11 losslessly compressed** version of the original `Wan-AI/Wan2.2-I2V-A14B` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.

🔥🔥🔥 Thanks to DFloat11 compression, `Wan-AI/Wan2.2-I2V-A14B` can now generate a 5-second 720P video on a single 24GB GPU, while maintaining full model quality. 🔥🔥🔥

### 📊 Performance Comparison

| Model                                              | Model Size         | Peak GPU Memory (5-second 720P generation)   | Generation Time (A100 GPU) |
|----------------------------------------------------|--------------------|----------------------------------------------|----------------------------|
| Wan-AI/Wan2.2-I2V-A14B (BFloat16)                  | ~56 GB             | O.O.M.                                       | -                          |
| Wan-AI/Wan2.2-I2V-A14B (DFloat11)                  | 19.47 + 19.44 GB   | 29.12 GB                                     | 42 minutes                 |
| Wan-AI/Wan2.2-I2V-A14B (DFloat11 + CPU Offloading) | 19.47 + 19.44 GB   | 20.01 GB                                     | 44 minutes                 |

### 🔍 How It Works

We apply Huffman coding to the exponent bits of BFloat16 model weights, which are highly compressible. We leverage hardware-aware algorithmic designs to enable highly efficient, on-the-fly weight decompression directly on the GPU. Find out more in our [research paper](https://arxiv.org/abs/2504.11651).

### 🔧 How to Use

1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:

    ```bash
    pip install -U dfloat11[cuda12]
    ```

2. Install the latest `diffusers` package from source:

    ```bash
    pip install git+https://github.com/huggingface/diffusers
    ```

3. Save the following code to a Python file `i2v.py`:

    ```python
    import time
    import torch
    import numpy as np
    import argparse
    from diffusers import WanImageToVideoPipeline
    from diffusers.utils import export_to_video, load_image
    from dfloat11 import DFloat11Model

    parser = argparse.ArgumentParser(description='Image to Video generation using Wan2.2-I2V model')
    parser.add_argument('--cpu_offload', action='store_true', help='Enable CPU offloading')
    parser.add_argument('--image_path', type=str, default="https://huggingface.co/datasets/YiYiXu/testing-images/resolve/main/wan_i2v_input.JPG", help='Path or URL to the input image')
    parser.add_argument('--width', type=int, default=1280, help='Output video width')
    parser.add_argument('--height', type=int, default=720, help='Output video height')
    parser.add_argument('--prompt', type=str, default="Summer beach vacation style, a white cat wearing sunglasses sits on a surfboard. The fluffy-furred feline gazes directly at the camera with a relaxed expression. Blurred beach scenery forms the background featuring crystal-clear waters, distant green hills, and a blue sky dotted with white clouds. The cat assumes a naturally relaxed posture, as if savoring the sea breeze and warm sunlight. A close-up shot highlights the feline's intricate details and the refreshing atmosphere of the seaside.", help='Prompt for video generation')
    parser.add_argument('--negative_prompt', type=str, default="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", help='Negative prompt for video generation')
    parser.add_argument('--num_frames', type=int, default=81, help='Number of frames to generate')
    parser.add_argument('--guidance_scale', type=float, default=3.5, help='Guidance scale for generation')
    parser.add_argument('--num_inference_steps', type=int, default=40, help='Number of inference steps')
    parser.add_argument('--seed', type=int, default=42, help='Random seed for generation')
    parser.add_argument('--output', type=str, default='i2v_output.mp4', help='Output video path')
    parser.add_argument('--fps', type=int, default=16, help='FPS of output video')

    args = parser.parse_args()

    image = load_image(args.image_path)

    pipe = WanImageToVideoPipeline.from_pretrained("Wan-AI/Wan2.2-I2V-A14B-Diffusers", torch_dtype=torch.bfloat16)

    DFloat11Model.from_pretrained(
        "DFloat11/Wan2.2-I2V-A14B-DF11",
        device="cpu",
        cpu_offload=args.cpu_offload,
        bfloat16_model=pipe.transformer,
    )
    DFloat11Model.from_pretrained(
        "DFloat11/Wan2.2-I2V-A14B-2-DF11",
        device="cpu",
        cpu_offload=args.cpu_offload,
        bfloat16_model=pipe.transformer_2,
    )

    pipe.enable_model_cpu_offload()

    max_area = args.width * args.height
    aspect_ratio = image.height / image.width
    mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
    height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
    width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
    image = image.resize((width, height))

    generator = torch.Generator(device="cuda").manual_seed(args.seed)

    start_time = time.time()
    output = pipe(
        image=image,
        prompt=args.prompt,
        negative_prompt=args.negative_prompt,
        height=height,
        width=width,
        num_frames=args.num_frames,
        guidance_scale=args.guidance_scale,
        num_inference_steps=args.num_inference_steps,
        generator=generator,
    ).frames[0]
    print(f"Time taken: {time.time() - start_time:.2f} seconds")

    export_to_video(output, args.output, fps=args.fps)

    max_memory = torch.cuda.max_memory_allocated()
    print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
    ```

4. To run without CPU offloading (40GB VRAM required):
    ```bash
    PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True python i2v.py
    ```

    To run with CPU offloading (22.5GB VRAM required):
    ```bash
    PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True python i2v.py --cpu_offload
    ```
    > Setting `PYTORCH_CUDA_ALLOC_CONF=expandable_segments:True` is strongly recommended to prevent out-of-memory errors caused by GPU memory fragmentation.

### 📄 Learn More

* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)