--- license: llama3.2 language: - en base_model: meta-llama/Llama-3.2-1B pipeline_tag: text-classification library_name: peft tags: - regression - story-point-estimation - software-engineering datasets: - talendesb metrics: - mae - mdae model-index: - name: llama-3.2-1b-story-point-estimation results: - task: type: regression name: Story Point Estimation dataset: name: talendesb Dataset type: talendesb split: test metrics: - type: mae value: 1.087 name: Mean Absolute Error (MAE) - type: mdae value: 0.78 name: Median Absolute Error (MdAE) --- # LLAMA 3 Story Point Estimator - talendesb This model is fine-tuned on issue descriptions from talendesb and tested on talendesb for story point estimation. ## Model Details - Base Model: LLAMA 3.2 1B - Training Project: talendesb - Test Project: talendesb - Task: Story Point Estimation (Regression) - Architecture: PEFT (LoRA) - Input: Issue titles - Output: Story point estimation (continuous value) ## Usage ```python from transformers import AutoModelForSequenceClassification, AutoTokenizer from peft import PeftConfig, PeftModel # Load peft config model config = PeftConfig.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-talendesb") # Load tokenizer and model tokenizer = AutoTokenizer.from_pretrained("DEVCamiloSepulveda/0-LLAMA3SP-talendesb") base_model = AutoModelForSequenceClassification.from_pretrained( config.base_model_name_or_path, num_labels=1, torch_dtype=torch.float16, device_map='auto' ) model = PeftModel.from_pretrained(base_model, "DEVCamiloSepulveda/0-LLAMA3SP-talendesb") # Prepare input text text = "Your issue description here" inputs = tokenizer(text, return_tensors="pt", truncation=True, max_length=20, padding="max_length") # Get prediction outputs = model(**inputs) story_points = outputs.logits.item() ``` ## Training Details - Fine-tuning method: LoRA (Low-Rank Adaptation) - Sequence length: 20 tokens - Best training epoch: 15 / 20 epochs - Batch size: 32 - Training time: 437.281 seconds - Mean Absolute Error (MAE): 1.087 - Median Absolute Error (MdAE): 0.780 ### Framework versions - PEFT 0.14.0