DDiaa commited on
Commit
980d46d
·
verified ·
1 Parent(s): f91d3af

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +96 -166
README.md CHANGED
@@ -1,202 +1,132 @@
1
  ---
2
  base_model: meta-llama/Llama-3.2-3B-Instruct
3
  library_name: peft
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
-
8
- <!-- Provide a quick summary of what the model is/does. -->
9
-
10
 
 
11
 
12
  ## Model Details
13
 
14
  ### Model Description
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
-
18
-
19
-
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- ### Model Sources [optional]
29
-
30
- <!-- Provide the basic links for the model. -->
31
-
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
  ## Uses
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
-
40
  ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
-
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
51
 
52
  ### Out-of-Scope Use
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
 
 
57
 
58
  ## Bias, Risks, and Limitations
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
 
 
63
 
64
  ### Recommendations
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
 
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
 
119
- [More Information Needed]
120
 
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
 
175
  **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
200
- ### Framework versions
201
-
202
- - PEFT 0.13.2
 
1
  ---
2
  base_model: meta-llama/Llama-3.2-3B-Instruct
3
  library_name: peft
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
+ pipeline_tag: text-generation
8
  ---
9
 
10
+ # Adaptively-tuned Llama-3.2-3B Paraphraser
 
 
 
11
 
12
+ This model is an adaptively fine-tuned version of Qwen2.5-3B-Instruct optimized to evade the Unigram watermarking method while preserving text quality. It serves as a paraphrasing model that maintains semantic meaning while modifying the statistical patterns used for watermark detection.
13
 
14
  ## Model Details
15
 
16
  ### Model Description
17
 
18
+ This model is a fine-tuned version of Qwen2.5-3B-Instruct that has been optimized using Direct Preference Optimization (DPO) to evade the [Unigram watermarking method](https://arxiv.org/abs/2306.17439) described in Zhao et. al (2023). The model preserves text quality while modifying the statistical patterns that watermarking methods rely on for detection.
19
+
20
+ - **Model type:** Decoder-only transformer language model
21
+ - **Language(s):** English
22
+ - **Finetuned from model:** meta-llama/Llama-3.2-3B-Instruct
23
+
24
+ ## Get Started
25
+
26
+ ```python
27
+ from transformers import AutoModelForCausalLM, AutoTokenizer
28
+ from peft import PeftModel, PeftConfig
29
+
30
+ # Load the base model
31
+ model = AutoModelForCausalLM.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
32
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.2-3B-Instruct")
33
+
34
+ # Load the LoRA adapter
35
+ model = PeftModel.from_pretrained(model, "DDiaa/Unigram-Llama-3.2-3B")
36
+
37
+ # Prepare the prompt
38
+
39
+ system_prompt = (
40
+ "You are an expert copy-editor. Please rewrite the following text in your own voice and paraphrase all "
41
+ "sentences.\n Ensure that the final output contains the same information as the original text and has "
42
+ "roughly the same length.\n Do not leave out any important details when rewriting in your own voice. Do "
43
+ "not include any information that is not present in the original text. Do not respond with a greeting or "
44
+ "any other extraneous information. Skip the preamble. Just rewrite the text directly."
45
+ )
46
+
47
+ def paraphrase_text(text):
48
+ # Prepare prompt
49
+ prompt = tokenizer.apply_chat_template(
50
+ [
51
+ {"role": "system", "content": system_prompt},
52
+ {"role": "user", "content": f"\n[[START OF TEXT]]\n{text}\n[[END OF TEXT]]"},
53
+ ],
54
+ tokenize=False,
55
+ add_generation_prompt=True,
56
+ ) + "[[START OF PARAPHRASE]]\n"
57
+
58
+ # Generate paraphrase
59
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
60
+ outputs = model.generate(
61
+ **inputs,
62
+ max_new_tokens=512,
63
+ temperature=1.0,
64
+ do_sample=True,
65
+ pad_token_id=tokenizer.pad_token_id
66
+ )
67
+
68
+ # Post-process output
69
+ paraphrased = tokenizer.decode(outputs[0], skip_special_tokens=True)
70
+ paraphrased = paraphrased.split("[[START OF PARAPHRASE]]")[1].split("[[END OF")[0].strip()
71
+
72
+ return paraphrased
73
+ ```
74
 
 
 
 
 
 
 
 
75
 
76
  ## Uses
77
 
 
 
78
  ### Direct Use
79
 
80
+ The model is designed for research purposes to:
81
+ 1. Study the robustness of watermarking methods
82
+ 2. Evaluate the effectiveness of adaptive attacks against content watermarks
83
+ 3. Test and develop improved watermarking techniques
 
84
 
85
+ ### Downstream Use
86
 
87
+ The model can be integrated into:
88
+ - Watermark robustness evaluation pipelines
89
+ - Research frameworks studying language model security
90
+ - Benchmark suites for watermarking methods
91
 
92
  ### Out-of-Scope Use
93
 
94
+ This model should not be used for:
95
+ - Production environments requiring watermark compliance
96
+ - Generating deceptive or misleading content
97
+ - Evading legitimate content attribution systems
98
+ - Any malicious purposes that could harm individuals or society
99
 
100
  ## Bias, Risks, and Limitations
101
 
102
+ - The model inherits biases from the base Qwen2.5-3B-Instruct model
103
+ - Performance varies based on text length and complexity
104
+ - Evasion capabilities may be reduced against newer watermarking methods
105
+ - May occasionally produce lower quality outputs compared to the base model
106
+ - Limited to English language texts
107
 
108
  ### Recommendations
109
 
110
+ - Use only for research and evaluation purposes
111
+ - Always maintain proper content attribution
112
+ - Monitor output quality metrics
113
+ - Consider ethical implications when studying security measures
114
+ - Use in conjunction with other evaluation methods
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115
 
 
116
 
 
117
 
118
+ ## Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
  **BibTeX:**
121
+ ```bibtex
122
+ @article{diaa2024optimizing,
123
+ title={Optimizing adaptive attacks against content watermarks for language models},
124
+ author={Diaa, Abdulrahman and Aremu, Toluwani and Lukas, Nils},
125
+ journal={arXiv preprint arXiv:2410.02440},
126
+ year={2024}
127
+ }
128
+ ```
 
 
 
 
 
 
 
 
 
 
 
 
129
 
130
  ## Model Card Contact
131
 
132
+ For questions about this model, please file an issue on the GitHub repository: https://github.com/ML-Watermarking/ada-llm-wm