Delete tokenization_phobert_fast.py
Browse files- tokenization_phobert_fast.py +0 -328
tokenization_phobert_fast.py
DELETED
@@ -1,328 +0,0 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
# Copyright (c) 2020, VinAI Research and the HuggingFace Inc. team.
|
3 |
-
# Copyright 2018 The Open AI Team Authors and The HuggingFace Inc. team.
|
4 |
-
#
|
5 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
-
# you may not use this file except in compliance with the License.
|
7 |
-
# You may obtain a copy of the License at
|
8 |
-
#
|
9 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
-
#
|
11 |
-
# Unless required by applicable law or agreed to in writing, software
|
12 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
-
# See the License for the specific language governing permissions and
|
15 |
-
# limitations under the License.
|
16 |
-
""" Tokenization classes for PhoBERT"""
|
17 |
-
|
18 |
-
import os
|
19 |
-
from collections import defaultdict
|
20 |
-
from shutil import copyfile
|
21 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
22 |
-
|
23 |
-
from transformers.tokenization_utils_base import EncodingFast
|
24 |
-
|
25 |
-
from transformers.tokenization_utils_fast import PreTrainedTokenizerFast
|
26 |
-
from transformers.utils import logging
|
27 |
-
from .tokenization_phobert import PhobertTokenizer
|
28 |
-
|
29 |
-
|
30 |
-
logger = logging.get_logger(__name__)
|
31 |
-
|
32 |
-
VOCAB_FILES_NAMES = {
|
33 |
-
"vocab_file": "vocab.txt",
|
34 |
-
"merges_file": "bpe.codes",
|
35 |
-
"tokenizer_file": "tokenizer.json",
|
36 |
-
}
|
37 |
-
|
38 |
-
PRETRAINED_VOCAB_FILES_MAP = {
|
39 |
-
"vocab_file": {
|
40 |
-
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/vocab.txt",
|
41 |
-
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/vocab.txt",
|
42 |
-
},
|
43 |
-
"merges_file": {
|
44 |
-
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/bpe.codes",
|
45 |
-
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/bpe.codes",
|
46 |
-
},
|
47 |
-
"tokenizer_file": {
|
48 |
-
"vinai/phobert-base": "https://huggingface.co/vinai/phobert-base/resolve/main/tokenizer.json",
|
49 |
-
"vinai/phobert-large": "https://huggingface.co/vinai/phobert-large/resolve/main/tokenizer.json",
|
50 |
-
},
|
51 |
-
}
|
52 |
-
|
53 |
-
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
54 |
-
"vinai/phobert-base": 256,
|
55 |
-
"vinai/phobert-large": 256,
|
56 |
-
}
|
57 |
-
|
58 |
-
|
59 |
-
class PhobertTokenizerFast(PreTrainedTokenizerFast):
|
60 |
-
"""
|
61 |
-
Construct a "Fast" BPE tokenizer for PhoBERT (backed by HuggingFace's *tokenizers* library).
|
62 |
-
|
63 |
-
Peculiarities:
|
64 |
-
|
65 |
-
- uses BERT's pre-tokenizer: BertPreTokenizer splits tokens on spaces, and also on punctuation. Each occurrence of
|
66 |
-
a punctuation character will be treated separately.
|
67 |
-
|
68 |
-
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the methods. Users should refer to the
|
69 |
-
superclass for more information regarding methods.
|
70 |
-
|
71 |
-
Args:
|
72 |
-
vocab_file (`str`):
|
73 |
-
Path to the vocabulary file.
|
74 |
-
merges_file (`str`):
|
75 |
-
Path to the merges file.
|
76 |
-
"""
|
77 |
-
|
78 |
-
vocab_files_names = VOCAB_FILES_NAMES
|
79 |
-
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
80 |
-
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
81 |
-
model_input_names = ["input_ids", "attention_mask"]
|
82 |
-
slow_tokenizer_class = PhobertTokenizer
|
83 |
-
|
84 |
-
def __init__(
|
85 |
-
self,
|
86 |
-
vocab_file=None,
|
87 |
-
merges_file=None,
|
88 |
-
tokenizer_file=None,
|
89 |
-
bos_token="<s>",
|
90 |
-
eos_token="</s>",
|
91 |
-
sep_token="</s>",
|
92 |
-
cls_token="<s>",
|
93 |
-
unk_token="<unk>",
|
94 |
-
pad_token="<pad>",
|
95 |
-
mask_token="<mask>",
|
96 |
-
**kwargs
|
97 |
-
):
|
98 |
-
super().__init__(
|
99 |
-
vocab_file,
|
100 |
-
merges_file,
|
101 |
-
tokenizer_file=tokenizer_file,
|
102 |
-
bos_token=bos_token,
|
103 |
-
eos_token=eos_token,
|
104 |
-
sep_token=sep_token,
|
105 |
-
cls_token=cls_token,
|
106 |
-
unk_token=unk_token,
|
107 |
-
pad_token=pad_token,
|
108 |
-
mask_token=mask_token,
|
109 |
-
**kwargs,
|
110 |
-
)
|
111 |
-
|
112 |
-
self.vocab_file = vocab_file
|
113 |
-
self.merges_file = merges_file
|
114 |
-
self.can_save_slow_tokenizer = False if not self.vocab_file else True
|
115 |
-
|
116 |
-
def get_added_vocab_hacking(self):
|
117 |
-
"""
|
118 |
-
Returns the added tokens in the vocabulary as a dictionary of token to index.
|
119 |
-
|
120 |
-
Returns:
|
121 |
-
`Dict[str, int], Dict[int, int]`: The added tokens, and their original and new ids
|
122 |
-
"""
|
123 |
-
base_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=False)
|
124 |
-
full_vocab_size = self._tokenizer.get_vocab_size(with_added_tokens=True)
|
125 |
-
if full_vocab_size == base_vocab_size:
|
126 |
-
return {}, {}
|
127 |
-
|
128 |
-
# Tokens in added_vocab should have ids that are equal to or larger than the size of base_vocab
|
129 |
-
added_vocab = dict(
|
130 |
-
(self._tokenizer.id_to_token(index), index + 1 - base_vocab_size + self.mask_token_id)
|
131 |
-
for index in range(base_vocab_size, full_vocab_size)
|
132 |
-
)
|
133 |
-
|
134 |
-
id_mapping = dict((index, self._tokenizer.token_to_id(tok)) for tok, index in added_vocab.items())
|
135 |
-
|
136 |
-
return added_vocab, id_mapping
|
137 |
-
|
138 |
-
def _decode(
|
139 |
-
self,
|
140 |
-
token_ids: Union[int, List[int]],
|
141 |
-
skip_special_tokens: bool = False,
|
142 |
-
clean_up_tokenization_spaces: bool = True,
|
143 |
-
**kwargs
|
144 |
-
) -> str:
|
145 |
-
self._decode_use_source_tokenizer = kwargs.pop("use_source_tokenizer", False)
|
146 |
-
|
147 |
-
if isinstance(token_ids, int):
|
148 |
-
token_ids = [token_ids]
|
149 |
-
|
150 |
-
# Mapping ids into their original values
|
151 |
-
_, id_mapping = self.get_added_vocab_hacking()
|
152 |
-
if len(id_mapping) > 0:
|
153 |
-
token_ids = [id_mapping[id] if id in id_mapping else id for id in token_ids]
|
154 |
-
|
155 |
-
text = self._tokenizer.decode(token_ids, skip_special_tokens=skip_special_tokens)
|
156 |
-
|
157 |
-
if clean_up_tokenization_spaces:
|
158 |
-
clean_text = self.clean_up_tokenization(text)
|
159 |
-
return clean_text
|
160 |
-
else:
|
161 |
-
return text
|
162 |
-
|
163 |
-
def _convert_encoding(
|
164 |
-
self,
|
165 |
-
encoding: EncodingFast,
|
166 |
-
return_token_type_ids: Optional[bool] = None,
|
167 |
-
return_attention_mask: Optional[bool] = None,
|
168 |
-
return_overflowing_tokens: bool = False,
|
169 |
-
return_special_tokens_mask: bool = False,
|
170 |
-
return_offsets_mapping: bool = False,
|
171 |
-
return_length: bool = False,
|
172 |
-
verbose: bool = True,
|
173 |
-
) -> Tuple[Dict[str, Any], List[EncodingFast]]:
|
174 |
-
"""
|
175 |
-
Convert the encoding representation (from low-level HuggingFace tokenizer output) to a python Dict and a list
|
176 |
-
of encodings, take care of building a batch from overflowing tokens.
|
177 |
-
|
178 |
-
Overflowing tokens are converted to additional examples (like batches) so the output values of the dict are
|
179 |
-
lists (overflows) of lists (tokens).
|
180 |
-
|
181 |
-
Output shape: (overflows, sequence length)
|
182 |
-
"""
|
183 |
-
if return_token_type_ids is None:
|
184 |
-
return_token_type_ids = "token_type_ids" in self.model_input_names
|
185 |
-
if return_attention_mask is None:
|
186 |
-
return_attention_mask = "attention_mask" in self.model_input_names
|
187 |
-
|
188 |
-
if return_overflowing_tokens and encoding.overflowing is not None:
|
189 |
-
encodings = [encoding] + encoding.overflowing
|
190 |
-
else:
|
191 |
-
encodings = [encoding]
|
192 |
-
|
193 |
-
encoding_dict = defaultdict(list)
|
194 |
-
added_vocab, _ = self.get_added_vocab_hacking()
|
195 |
-
for e in encodings:
|
196 |
-
# encoding_dict["input_ids"].append(e.ids)
|
197 |
-
# Reassign ids of tokens due to the hacking strategy
|
198 |
-
ids = []
|
199 |
-
for id, token in zip(e.ids, e.tokens):
|
200 |
-
if id <= self.mask_token_id:
|
201 |
-
ids.append(id)
|
202 |
-
else:
|
203 |
-
if token.strip() in added_vocab:
|
204 |
-
ids.append(added_vocab[token.strip()])
|
205 |
-
else:
|
206 |
-
ids.append(self.unk_token_id)
|
207 |
-
|
208 |
-
encoding_dict["input_ids"].append(ids)
|
209 |
-
|
210 |
-
if return_token_type_ids:
|
211 |
-
encoding_dict["token_type_ids"].append(e.type_ids)
|
212 |
-
if return_attention_mask:
|
213 |
-
encoding_dict["attention_mask"].append(e.attention_mask)
|
214 |
-
if return_special_tokens_mask:
|
215 |
-
encoding_dict["special_tokens_mask"].append(e.special_tokens_mask)
|
216 |
-
if return_offsets_mapping:
|
217 |
-
encoding_dict["offset_mapping"].append(e.offsets)
|
218 |
-
if return_length:
|
219 |
-
# encoding_dict["length"].append(len(e.ids))
|
220 |
-
encoding_dict["length"].append(len(ids))
|
221 |
-
|
222 |
-
return encoding_dict, encodings
|
223 |
-
|
224 |
-
def build_inputs_with_special_tokens(
|
225 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
226 |
-
) -> List[int]:
|
227 |
-
"""
|
228 |
-
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
229 |
-
adding special tokens. A PhoBERT sequence has the following format:
|
230 |
-
|
231 |
-
- single sequence: `<s> X </s>`
|
232 |
-
- pair of sequences: `<s> A </s></s> B </s>`
|
233 |
-
|
234 |
-
Args:
|
235 |
-
token_ids_0 (`List[int]`):
|
236 |
-
List of IDs to which the special tokens will be added.
|
237 |
-
token_ids_1 (`List[int]`, *optional*):
|
238 |
-
Optional second list of IDs for sequence pairs.
|
239 |
-
|
240 |
-
Returns:
|
241 |
-
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
242 |
-
"""
|
243 |
-
|
244 |
-
if token_ids_1 is None:
|
245 |
-
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
246 |
-
cls = [self.cls_token_id]
|
247 |
-
sep = [self.sep_token_id]
|
248 |
-
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
249 |
-
|
250 |
-
def get_special_tokens_mask(
|
251 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
252 |
-
) -> List[int]:
|
253 |
-
"""
|
254 |
-
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
255 |
-
special tokens using the tokenizer `prepare_for_model` method.
|
256 |
-
|
257 |
-
Args:
|
258 |
-
token_ids_0 (`List[int]`):
|
259 |
-
List of IDs.
|
260 |
-
token_ids_1 (`List[int]`, *optional*):
|
261 |
-
Optional second list of IDs for sequence pairs.
|
262 |
-
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
263 |
-
Whether or not the token list is already formatted with special tokens for the model.
|
264 |
-
|
265 |
-
Returns:
|
266 |
-
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
267 |
-
"""
|
268 |
-
|
269 |
-
if already_has_special_tokens:
|
270 |
-
return super().get_special_tokens_mask(
|
271 |
-
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
272 |
-
)
|
273 |
-
|
274 |
-
if token_ids_1 is None:
|
275 |
-
return [1] + ([0] * len(token_ids_0)) + [1]
|
276 |
-
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
277 |
-
|
278 |
-
def create_token_type_ids_from_sequences(
|
279 |
-
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
280 |
-
) -> List[int]:
|
281 |
-
"""
|
282 |
-
Create a mask from the two sequences passed to be used in a sequence-pair classification task. PhoBERT does not
|
283 |
-
make use of token type ids, therefore a list of zeros is returned.
|
284 |
-
|
285 |
-
Args:
|
286 |
-
token_ids_0 (`List[int]`):
|
287 |
-
List of IDs.
|
288 |
-
token_ids_1 (`List[int]`, *optional*):
|
289 |
-
Optional second list of IDs for sequence pairs.
|
290 |
-
|
291 |
-
Returns:
|
292 |
-
`List[int]`: List of zeros.
|
293 |
-
|
294 |
-
"""
|
295 |
-
|
296 |
-
sep = [self.sep_token_id]
|
297 |
-
cls = [self.cls_token_id]
|
298 |
-
|
299 |
-
if token_ids_1 is None:
|
300 |
-
return len(cls + token_ids_0 + sep) * [0]
|
301 |
-
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
302 |
-
|
303 |
-
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
304 |
-
if not self.can_save_slow_tokenizer:
|
305 |
-
raise ValueError(
|
306 |
-
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
307 |
-
"tokenizer."
|
308 |
-
)
|
309 |
-
|
310 |
-
if not os.path.isdir(save_directory):
|
311 |
-
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
312 |
-
return
|
313 |
-
|
314 |
-
out_vocab_file = os.path.join(
|
315 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
316 |
-
)
|
317 |
-
|
318 |
-
out_merges_file = os.path.join(
|
319 |
-
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
320 |
-
)
|
321 |
-
|
322 |
-
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
323 |
-
copyfile(self.vocab_file, out_vocab_file)
|
324 |
-
|
325 |
-
if os.path.abspath(self.merges_file) != os.path.abspath(out_merges_file):
|
326 |
-
copyfile(self.merges_file, out_merges_file)
|
327 |
-
|
328 |
-
return (out_vocab_file, out_merges_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|