--- library_name: transformers language: - nan license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - mozilla-foundation/common_voice_17_0 metrics: - wer model-index: - name: Hokkien-to-Tai Lo Whisper ver 4 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.0 type: mozilla-foundation/common_voice_17_0 config: nan-tw split: test args: 'config: hi, split: test' metrics: - name: Wer type: wer value: 84.17395202869312 --- # Hokkien-to-Tai Lo Whisper ver 4 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the Common Voice 16.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.4709 - Wer: 84.1740 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 8 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - training_steps: 8000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.3834 | 0.256 | 800 | 0.5102 | 83.2549 | | 0.4023 | 0.512 | 1600 | 0.4974 | 82.0220 | | 0.4024 | 0.768 | 2400 | 0.4877 | 83.6808 | | 0.3819 | 1.024 | 3200 | 0.4820 | 80.9460 | | 0.3125 | 1.28 | 4000 | 0.4772 | 79.4889 | | 0.315 | 1.536 | 4800 | 0.4762 | 82.0220 | | 0.3057 | 1.792 | 5600 | 0.4707 | 80.2062 | | 0.3093 | 2.048 | 6400 | 0.4695 | 82.0444 | | 0.2507 | 2.304 | 7200 | 0.4716 | 83.4342 | | 0.2476 | 2.56 | 8000 | 0.4709 | 84.1740 | ### Framework versions - Transformers 4.49.0 - Pytorch 2.5.1+cu124 - Datasets 3.3.2 - Tokenizers 0.21.0