--- license: llama3.1 datasets: - nvidia/OpenMathInstruct-2 language: - en metrics: - accuracy base_model: - meta-llama/Llama-3.1-8B-Instruct model-index: - name: Control-LLM-Llama3.1-8B-Math16 results: - task: type: math-evaluation dataset: type: parquet name: Math, Math Hard, GSM8K dataset_kwargs: data_files: "https://github.com/linkedin/ControlLLM/blob/main/src/controlllm/inference/llm_eval_harness/additional_tasks/math/joined_math.parquet" metrics: - name: exact_match,none type: exact_match value: 0.6327358367133324 stderr: 0.0052245703347459605 verified: false - name: exact_match,none (gsm8k_0shot_instruct) type: exact_match value: 0.9052312357846853 stderr: 0.008067791560015407 verified: false - name: exact_match,none (meta_math_0shot_instruct) type: exact_match value: 0.6276 stderr: 0.006837616441401548 verified: false - name: exact_match,none (meta_math_hard_0shot_instruct) type: exact_match value: 0.3806646525679758 stderr: 0.013349170720370741 verified: false - task: type: original-capability dataset: type: meta/Llama-3.1-8B-Instruct-evals name: Llama-3.1-8B-Instruct-evals Dataset dataset_path: "meta-llama/llama-3.1-8_b-instruct-evals" dataset_name: "Llama-3.1-8B-Instruct-evals__arc_challenge__details" metrics: - name: exact_match,strict-match type: exact_match value: 0.5723263625528227 stderr: 0.002858377993520894 verified: false - name: exact_match,strict-match (meta_arc_0shot_instruct) type: exact_match value: 0.7974248927038626 stderr: 0.01178043813618557 verified: false - name: exact_match,strict-match (meta_gpqa_0shot_cot_instruct) type: exact_match value: 0.25223214285714285 stderr: 0.02054139101648797 verified: false - name: exact_match,strict-match (meta_mmlu_0shot_instruct) type: exact_match value: 0.6837345107534539 stderr: 0.0039243761987253515 verified: false - name: exact_match,strict-match (meta_mmlu_pro_5shot_instruct) type: exact_match value: 0.4324301861702128 stderr: 0.004516653585262379 verified: false pipeline_tag: text-generation library_name: transformers --- # Control-LLM-Llama3.1-8B-Math16 This is a fine-tuned model of Llama-3.1-8B-Instruct for mathematical tasks on OpenMath2 dataset, as described in the paper [Control LLM: Controlled Evolution for Intelligence Retention in LLM](https://huggingface.co/papers/2501.10979). ## Linked Paper This model is associated with the paper: [Control-LLM](https://arxiv.org/abs/2501.10979). ## Linked Open Source code - training, eval and benchmark This model is associated with the github: [Control-LLM](https://github.com/linkedin/ControlLLM). ## Evaluation Results Here is an overview of the evaluation results and findings: ### Benchmark Result and Catastrophic Forgetting on OpenMath The following plot illustrates benchmark result and catastrophic forgetting mitigation on the OpenMath2 dataset. ![Catastrophic Forgetting](plots/catastrophic_forgetting_openmath.png) ### Alignment Comparison The plot below highlights the alignment comparison of the model trained with Control LLM and Full Parameter Tuning. ![Alignment Comparison](plots/alignment_comparison.png) ### Benchmark Results Table The table below summarizes evaluation results across mathematical tasks and original capabilities. | **Model** | **MH** | **M** | **G8K** | **M-Avg** | **ARC** | **GPQA** | **MLU** | **MLUP** | **O-Avg** | **Overall** | |-------------------|--------|--------|---------|-----------|---------|----------|---------|----------|-----------|-------------| | Llama3.1-8B-Inst | 23.7 | 50.9 | 85.6 | 52.1 | 83.4 | 29.9 | 72.4 | 46.7 | 60.5 | 56.3 | | OpenMath2-Llama3 | 38.4 | 64.1 | 90.3 | 64.3 | 45.8 | 1.3 | 4.5 | 19.5 | 12.9 | 38.6 | | **Full Tune** | **38.5**| **63.7**| 90.2 | **63.9** | 58.2 | 1.1 | 7.3 | 23.5 | 16.5 | 40.1 | | Partial Tune | 36.4 | 61.4 | 89.0 | 61.8 | 66.2 | 6.0 | 25.7 | 30.9 | 29.3 | 45.6 | | Stack Exp. | 35.6 | 61.0 | 90.8 | 61.8 | 69.3 | 18.8 | 61.8 | 43.1 | 53.3 | 57.6 | | Hybrid Exp. | 34.4 | 61.1 | 90.1 | 61.5 | **81.8**| **25.9** | 67.2 | **43.9** | 57.1 | 59.3 | | **Control LLM*** | 38.1 | 62.7 | **90.4**| 63.2 | 79.7 | 25.2 | **68.1**| 43.6 | **57.2** | **60.2** | --- ### Explanation: - **MH**: MathHard - **M**: Math - **G8K**: GSM8K - **M-Avg**: Math - Average across MathHard, Math, and GSM8K - **ARC**: ARC benchmark - **GPQA**: General knowledge QA - **MLU**: MMLU (Massive Multitask Language Understanding) - **MLUP**: MMLU Pro - **O-Avg**: Orginal Capability - Average across ARC, GPQA, MMLU, and MMLUP - **Overall**: Combined average across all tasks