ColabPro commited on
Commit
081bb3a
·
1 Parent(s): d223a2b

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 70.32 +/- 76.60
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c3b069cb0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c3b069d40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c3b069dd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c3b069e60>", "_build": "<function ActorCriticPolicy._build at 0x7f6c3b069ef0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c3b069f80>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c3b071050>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c3b0710e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c3b071170>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c3b071200>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c3b071290>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c3b0b8750>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 501760, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652743136.9231339, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO2ib1s5Ik8GzS3PbDY9b1E7mW9vZXYPAAAAAAAAAAAJja9PdNhgT8P6j2+FCYMvj9JbLzbzW+9AAAAAAAAAAD6aFe+tR5HP29ZKT6OCWm9SWRNPf4MFT4AAAAAAAAAAKbrpr0pcAq6BleKO00tmDjP69K6kYeouQAAAAAAAIA/Mz67PZydNLzOaqy82smjPGR/mb1EKIU9AACAPwAAgD9mooo75ZYjPn7YQr1Zcxi+tgQdvdYzS70AAAAAAAAAAJrfKD1dkbc/4gSHPn/xlr1eHMQ9wnt7PgAAAAAAAAAAc/2VPa6Zp7qGz3Ox5ffpLrU1/zknRDcxAACAPwAAgD/m1Ew9SK2Oup12LLleqPazyjzwumCmRzgAAIA/AACAPzO0Ib2dJIs+uoWEPUTFFr4AMAy6WW6hPQAAAAAAAAAAAH5aPo1NAT5o0iu+apYivtCDAL2oml28AAAAAAAAAAAzy9O9pVKIPwYjCz7no6y9CuusujbUzjwAAAAAAAAAADPZA7zl3Aw/J1uGvbwX772W0JI8tbRVPQAAAAAAAAAAgLJKPcCRuz/XBC4/81aIPm/agbxeaJY9AAAAAAAAAABgMx6+MN1QP4gj7z2TSPG9ZfsWPd5uvr0AAAAAAAAAAKZ1xz3hUIu6dh1VNxVgaTKhcju6dbl4tgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0035199999999999676, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4PPDCOG9WkCUhpRSlIwBbJRN6AOMAXSUR0CCGfrB0p3HdX2UKGgGaAloD0MID/Ckhct/YUCUhpRSlGgVTegDaBZHQIIcVSwW30B1fZQoaAZoCWgPQwgWURN9PooxQJSGlFKUaBVNQAFoFkdAgjNQIldC3XV9lChoBmgJaA9DCD3WjAzy3WJAlIaUUpRoFU3oA2gWR0CCNC6V+qiodX2UKGgGaAloD0MIB35Uw35jY0CUhpRSlGgVTegDaBZHQII03f4yoGZ1fZQoaAZoCWgPQwj1MLQ6OWhlQJSGlFKUaBVN6ANoFkdAgkDw7kn1F3V9lChoBmgJaA9DCMxjzcggblxAlIaUUpRoFU3oA2gWR0CCQg1qFh5PdX2UKGgGaAloD0MI8+fbgqW7WUCUhpRSlGgVTegDaBZHQIJgM495hSd1fZQoaAZoCWgPQwhWD5iHTEheQJSGlFKUaBVN6ANoFkdAgmsyAhB7eHV9lChoBmgJaA9DCI2chT1trGBAlIaUUpRoFU3oA2gWR0CCdqWEbo8qdX2UKGgGaAloD0MIISI17eLBZUCUhpRSlGgVTegDaBZHQIKKO/Firkt1fZQoaAZoCWgPQwifqkIDsWlaQJSGlFKUaBVN6ANoFkdAgqEyXUpd8nV9lChoBmgJaA9DCO6vHvetu2VAlIaUUpRoFU3oA2gWR0CCwqicoYvWdX2UKGgGaAloD0MIf6KyYU2TY0CUhpRSlGgVTegDaBZHQILGppFkQPJ1fZQoaAZoCWgPQwgepKfIITBmQJSGlFKUaBVN6ANoFkdAgto8S5AhS3V9lChoBmgJaA9DCD7pRIKpY11AlIaUUpRoFU3oA2gWR0CC4FJRO1v3dX2UKGgGaAloD0MIawvPS0UPYECUhpRSlGgVTegDaBZHQIL6Xlr/Khd1fZQoaAZoCWgPQwg3iUFg5fNjQJSGlFKUaBVN6ANoFkdAgvzgOSW7e3V9lChoBmgJaA9DCPktOllqPQpAlIaUUpRoFU06AWgWR0CDD65/b0vodX2UKGgGaAloD0MI6pWyDHGJYkCUhpRSlGgVTegDaBZHQIMTlirksBh1fZQoaAZoCWgPQwjH9e/6TAViQJSGlFKUaBVN6ANoFkdAgxRiIDYAbXV9lChoBmgJaA9DCJWdflAXHGJAlIaUUpRoFU3oA2gWR0CDFQVj7Q9idX2UKGgGaAloD0MI8X9HVCgZYUCUhpRSlGgVTegDaBZHQIMa/d9Dx9Z1fZQoaAZoCWgPQwjEP2zp0VhfQJSGlFKUaBVN6ANoFkdAgxv55Rjz7XV9lChoBmgJaA9DCC9QUmABPF5AlIaUUpRoFU3oA2gWR0CDOlpljEvTdX2UKGgGaAloD0MIqoJRSZ0EZECUhpRSlGgVTegDaBZHQINDOLzf7791fZQoaAZoCWgPQwjJkjmWd71XQJSGlFKUaBVN6ANoFkdAg0hi6xxDLXV9lChoBmgJaA9DCI4/UdmwPEhAlIaUUpRoFU1mAWgWR0CDUmV5a/yodX2UKGgGaAloD0MIuHU3T3UrY0CUhpRSlGgVTegDaBZHQINdQ1P3ztl1fZQoaAZoCWgPQwhVibK3lF9lQJSGlFKUaBVN6ANoFkdAg3E0+1SflXV9lChoBmgJaA9DCMZOeAlOH2RAlIaUUpRoFU3oA2gWR0CDjy2vStvGdX2UKGgGaAloD0MIhc0AF+RCZECUhpRSlGgVTegDaBZHQIOkjLEDQqt1fZQoaAZoCWgPQwgt0O6Q4tpiQJSGlFKUaBVN6ANoFkdAg6ppblijL3V9lChoBmgJaA9DCJoIG55eo0ZAlIaUUpRoFU0pAWgWR0CDrp+98JD3dX2UKGgGaAloD0MI72/QXn3/YUCUhpRSlGgVTegDaBZHQIPC6WmgrYp1fZQoaAZoCWgPQwjOFhBaDzNgQJSGlFKUaBVN6ANoFkdAg8VL9uP3jHV9lChoBmgJaA9DCEQy5Nh63jZAlIaUUpRoFU0eAWgWR0CDyduuRs/IdX2UKGgGaAloD0MIdZDXg0n/YUCUhpRSlGgVTegDaBZHQIPaLVWjoIR1fZQoaAZoCWgPQwgz38FPHCJlQJSGlFKUaBVN6ANoFkdAg9rivgWJrXV9lChoBmgJaA9DCHbj3ZGxTV9AlIaUUpRoFU3oA2gWR0CD23L2YfGNdX2UKGgGaAloD0MIxy3m54b9YECUhpRSlGgVTegDaBZHQIPg3b48EFJ1fZQoaAZoCWgPQwhmhLcHoZxiQJSGlFKUaBVN6ANoFkdAg+GyYXwb2nV9lChoBmgJaA9DCI7MI38wHDdAlIaUUpRoFU01AWgWR0CD+LugHu7ZdX2UKGgGaAloD0MIexSuR+FfXkCUhpRSlGgVTegDaBZHQIP610knkT91fZQoaAZoCWgPQwjmeAWiJ6JkQJSGlFKUaBVN6ANoFkdAhAjbG3nZCnV9lChoBmgJaA9DCDmc+dUcRmFAlIaUUpRoFU3oA2gWR0CEDfM5fdAPdX2UKGgGaAloD0MIqDgOvFqBZUCUhpRSlGgVTegDaBZHQIQSKrksBhh1fZQoaAZoCWgPQwi8PJ0rSs9hQJSGlFKUaBVN6ANoFkdAhCGoUahpQHV9lChoBmgJaA9DCK358ZcW7TFAlIaUUpRoFU0/AWgWR0CEO07gbZOBdX2UKGgGaAloD0MIyatzDEjbZkCUhpRSlGgVTegDaBZHQIRr912aDwp1fZQoaAZoCWgPQwh1yw7xj/VhQJSGlFKUaBVN6ANoFkdAhHJ3iR4hU3V9lChoBmgJaA9DCNKPhlPmMWRAlIaUUpRoFU3oA2gWR0CEdt4N7SiNdX2UKGgGaAloD0MIHozYJ4AvX0CUhpRSlGgVTegDaBZHQISORWaMJhR1fZQoaAZoCWgPQwjHnGfsywNhQJSGlFKUaBVN6ANoFkdAhJM4WcjJMnV9lChoBmgJaA9DCB0+6USCwV1AlIaUUpRoFU3oA2gWR0CEpJf2saKldX2UKGgGaAloD0MIrkZ2pWX8Y0CUhpRSlGgVTegDaBZHQISlVzGPxQV1fZQoaAZoCWgPQwj59xkXDr1fQJSGlFKUaBVN6ANoFkdAhKX0tZmqYXV9lChoBmgJaA9DCJcfuMoTgmZAlIaUUpRoFU3oA2gWR0CErCUSIxgzdX2UKGgGaAloD0MIf/lkxfDLYECUhpRSlGgVTegDaBZHQIStEfcN6Pd1fZQoaAZoCWgPQwha9iSwOUNBQJSGlFKUaBVL+mgWR0CEvhBomG/OdX2UKGgGaAloD0MIq5MzFPfGYkCUhpRSlGgVTegDaBZHQITEYixFAml1fZQoaAZoCWgPQwi2uTE94axgQJSGlFKUaBVN6ANoFkdAhNTa0QbuMXV9lChoBmgJaA9DCBpQb0bNC2RAlIaUUpRoFU3oA2gWR0CE2h0dRzikdX2UKGgGaAloD0MIlGjJ4+kQY0CUhpRSlGgVTegDaBZHQITeqLQ5WBB1fZQoaAZoCWgPQwhz1TxH5NZhQJSGlFKUaBVN6ANoFkdAhO+dDQZ4wHV9lChoBmgJaA9DCO2CwTV3hCLAlIaUUpRoFU1iAWgWR0CE8NSk0rLAdX2UKGgGaAloD0MIK08g7JT6YECUhpRSlGgVTegDaBZHQIUJc4Pwuul1fZQoaAZoCWgPQwgaM4l6wXVFQJSGlFKUaBVNcAFoFkdAhS6i7sfJWHV9lChoBmgJaA9DCKqc9pQcx2NAlIaUUpRoFU3oA2gWR0CFNOkoF3Y+dX2UKGgGaAloD0MI16VG6OeqY0CUhpRSlGgVTegDaBZHQIVAwyuZCv51fZQoaAZoCWgPQwi4c2Gkl9lgQJSGlFKUaBVN6ANoFkdAhUVCkGiYcHV9lChoBmgJaA9DCDPgLCVLRmNAlIaUUpRoFU3oA2gWR0CFYZSQYDT0dX2UKGgGaAloD0MID5iHTHl9YUCUhpRSlGgVTegDaBZHQIVvNZTyaux1fZQoaAZoCWgPQwhOgGH585tfQJSGlFKUaBVN6ANoFkdAhXARxDLKWHV9lChoBmgJaA9DCAkVHF4QA2FAlIaUUpRoFU3oA2gWR0CFcL1Ng0CSdX2UKGgGaAloD0MIV7CNeLJHXkCUhpRSlGgVTegDaBZHQIV8nuJDVpd1fZQoaAZoCWgPQwgzMshdhCE3QJSGlFKUaBVNMwFoFkdAhYBB8QZn+XV9lChoBmgJaA9DCOigSzh0eGNAlIaUUpRoFU3oA2gWR0CFj+gM+eOGdX2UKGgGaAloD0MIHHv2XCYmZkCUhpRSlGgVTegDaBZHQIWW2X7cfvF1fZQoaAZoCWgPQwgv3o/br/ZgQJSGlFKUaBVN6ANoFkdAhaivhQ3xWnV9lChoBmgJaA9DCHaKVYOw12NAlIaUUpRoFU3oA2gWR0CFrlHAAQxvdX2UKGgGaAloD0MIl1ZD4h5IWkCUhpRSlGgVTegDaBZHQIXEUBltj1B1fZQoaAZoCWgPQwh7MZQT7chfQJSGlFKUaBVN6ANoFkdAhcWoSlFc6nV9lChoBmgJaA9DCKMh41EqmGBAlIaUUpRoFU3oA2gWR0CF4PlI3BHkdX2UKGgGaAloD0MIMSQnE7eqW0CUhpRSlGgVTegDaBZHQIYMF+so2GZ1fZQoaAZoCWgPQwjJ5T+kX/VjQJSGlFKUaBVN6ANoFkdAhhNYOlO45XV9lChoBmgJaA9DCBnIs8s3eWJAlIaUUpRoFU3oA2gWR0CGJWTr3TNMdX2UKGgGaAloD0MIqDl5kQl4XUCUhpRSlGgVTegDaBZHQIZHpHNHH3l1fZQoaAZoCWgPQwiNXaJ66wxwQJSGlFKUaBVN1QJoFkdAhlWqVY6nznV9lChoBmgJaA9DCBPwayQJqVZAlIaUUpRoFU3oA2gWR0CGVsEC/47BdX2UKGgGaAloD0MI/3ivWhkeYkCUhpRSlGgVTegDaBZHQIZXtZs9B8h1fZQoaAZoCWgPQwiuEcE4OOlgQJSGlFKUaBVN6ANoFkdAhliDXWe6I3V9lChoBmgJaA9DCI0KnGwD8ltAlIaUUpRoFU3oA2gWR0CGZiz4UN8WdX2UKGgGaAloD0MINSbEXFIPW0CUhpRSlGgVTegDaBZHQIZqE7U5MlF1fZQoaAZoCWgPQwhjQswlVTFgQJSGlFKUaBVN6ANoFkdAhnRg0j1PFnV9lChoBmgJaA9DCGYyHM/nj21AlIaUUpRoFU2wAWgWR0CGfK+3Ytg8dX2UKGgGaAloD0MIIsSVs3d2X0CUhpRSlGgVTegDaBZHQIZ/0ZJkGzN1fZQoaAZoCWgPQwhmTMEaZ+lgQJSGlFKUaBVN6ANoFkdAhpS6oVEeAHV9lChoBmgJaA9DCBTnqKPjgFxAlIaUUpRoFU3oA2gWR0CGpJUdaMaTdX2UKGgGaAloD0MIrFYm/FKDXECUhpRSlGgVTegDaBZHQIalvnZCfHx1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 980, "n_steps": 128, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:db28c3fa2454e2bf642325ac22783899e91770fa2877a9b1abd1200f8e111d56
3
+ size 144048
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c3b069cb0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c3b069d40>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c3b069dd0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c3b069e60>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f6c3b069ef0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f6c3b069f80>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c3b071050>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f6c3b0710e0>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c3b071170>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c3b071200>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c3b071290>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f6c3b0b8750>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 501760,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652743136.9231339,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAADO2ib1s5Ik8GzS3PbDY9b1E7mW9vZXYPAAAAAAAAAAAJja9PdNhgT8P6j2+FCYMvj9JbLzbzW+9AAAAAAAAAAD6aFe+tR5HP29ZKT6OCWm9SWRNPf4MFT4AAAAAAAAAAKbrpr0pcAq6BleKO00tmDjP69K6kYeouQAAAAAAAIA/Mz67PZydNLzOaqy82smjPGR/mb1EKIU9AACAPwAAgD9mooo75ZYjPn7YQr1Zcxi+tgQdvdYzS70AAAAAAAAAAJrfKD1dkbc/4gSHPn/xlr1eHMQ9wnt7PgAAAAAAAAAAc/2VPa6Zp7qGz3Ox5ffpLrU1/zknRDcxAACAPwAAgD/m1Ew9SK2Oup12LLleqPazyjzwumCmRzgAAIA/AACAPzO0Ib2dJIs+uoWEPUTFFr4AMAy6WW6hPQAAAAAAAAAAAH5aPo1NAT5o0iu+apYivtCDAL2oml28AAAAAAAAAAAzy9O9pVKIPwYjCz7no6y9CuusujbUzjwAAAAAAAAAADPZA7zl3Aw/J1uGvbwX772W0JI8tbRVPQAAAAAAAAAAgLJKPcCRuz/XBC4/81aIPm/agbxeaJY9AAAAAAAAAABgMx6+MN1QP4gj7z2TSPG9ZfsWPd5uvr0AAAAAAAAAAKZ1xz3hUIu6dh1VNxVgaTKhcju6dbl4tgAAAAAAAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.0035199999999999676,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMI4PPDCOG9WkCUhpRSlIwBbJRN6AOMAXSUR0CCGfrB0p3HdX2UKGgGaAloD0MID/Ckhct/YUCUhpRSlGgVTegDaBZHQIIcVSwW30B1fZQoaAZoCWgPQwgWURN9PooxQJSGlFKUaBVNQAFoFkdAgjNQIldC3XV9lChoBmgJaA9DCD3WjAzy3WJAlIaUUpRoFU3oA2gWR0CCNC6V+qiodX2UKGgGaAloD0MIB35Uw35jY0CUhpRSlGgVTegDaBZHQII03f4yoGZ1fZQoaAZoCWgPQwj1MLQ6OWhlQJSGlFKUaBVN6ANoFkdAgkDw7kn1F3V9lChoBmgJaA9DCMxjzcggblxAlIaUUpRoFU3oA2gWR0CCQg1qFh5PdX2UKGgGaAloD0MI8+fbgqW7WUCUhpRSlGgVTegDaBZHQIJgM495hSd1fZQoaAZoCWgPQwhWD5iHTEheQJSGlFKUaBVN6ANoFkdAgmsyAhB7eHV9lChoBmgJaA9DCI2chT1trGBAlIaUUpRoFU3oA2gWR0CCdqWEbo8qdX2UKGgGaAloD0MIISI17eLBZUCUhpRSlGgVTegDaBZHQIKKO/Firkt1fZQoaAZoCWgPQwifqkIDsWlaQJSGlFKUaBVN6ANoFkdAgqEyXUpd8nV9lChoBmgJaA9DCO6vHvetu2VAlIaUUpRoFU3oA2gWR0CCwqicoYvWdX2UKGgGaAloD0MIf6KyYU2TY0CUhpRSlGgVTegDaBZHQILGppFkQPJ1fZQoaAZoCWgPQwgepKfIITBmQJSGlFKUaBVN6ANoFkdAgto8S5AhS3V9lChoBmgJaA9DCD7pRIKpY11AlIaUUpRoFU3oA2gWR0CC4FJRO1v3dX2UKGgGaAloD0MIawvPS0UPYECUhpRSlGgVTegDaBZHQIL6Xlr/Khd1fZQoaAZoCWgPQwg3iUFg5fNjQJSGlFKUaBVN6ANoFkdAgvzgOSW7e3V9lChoBmgJaA9DCPktOllqPQpAlIaUUpRoFU06AWgWR0CDD65/b0vodX2UKGgGaAloD0MI6pWyDHGJYkCUhpRSlGgVTegDaBZHQIMTlirksBh1fZQoaAZoCWgPQwjH9e/6TAViQJSGlFKUaBVN6ANoFkdAgxRiIDYAbXV9lChoBmgJaA9DCJWdflAXHGJAlIaUUpRoFU3oA2gWR0CDFQVj7Q9idX2UKGgGaAloD0MI8X9HVCgZYUCUhpRSlGgVTegDaBZHQIMa/d9Dx9Z1fZQoaAZoCWgPQwjEP2zp0VhfQJSGlFKUaBVN6ANoFkdAgxv55Rjz7XV9lChoBmgJaA9DCC9QUmABPF5AlIaUUpRoFU3oA2gWR0CDOlpljEvTdX2UKGgGaAloD0MIqoJRSZ0EZECUhpRSlGgVTegDaBZHQINDOLzf7791fZQoaAZoCWgPQwjJkjmWd71XQJSGlFKUaBVN6ANoFkdAg0hi6xxDLXV9lChoBmgJaA9DCI4/UdmwPEhAlIaUUpRoFU1mAWgWR0CDUmV5a/yodX2UKGgGaAloD0MIuHU3T3UrY0CUhpRSlGgVTegDaBZHQINdQ1P3ztl1fZQoaAZoCWgPQwhVibK3lF9lQJSGlFKUaBVN6ANoFkdAg3E0+1SflXV9lChoBmgJaA9DCMZOeAlOH2RAlIaUUpRoFU3oA2gWR0CDjy2vStvGdX2UKGgGaAloD0MIhc0AF+RCZECUhpRSlGgVTegDaBZHQIOkjLEDQqt1fZQoaAZoCWgPQwgt0O6Q4tpiQJSGlFKUaBVN6ANoFkdAg6ppblijL3V9lChoBmgJaA9DCJoIG55eo0ZAlIaUUpRoFU0pAWgWR0CDrp+98JD3dX2UKGgGaAloD0MI72/QXn3/YUCUhpRSlGgVTegDaBZHQIPC6WmgrYp1fZQoaAZoCWgPQwjOFhBaDzNgQJSGlFKUaBVN6ANoFkdAg8VL9uP3jHV9lChoBmgJaA9DCEQy5Nh63jZAlIaUUpRoFU0eAWgWR0CDyduuRs/IdX2UKGgGaAloD0MIdZDXg0n/YUCUhpRSlGgVTegDaBZHQIPaLVWjoIR1fZQoaAZoCWgPQwgz38FPHCJlQJSGlFKUaBVN6ANoFkdAg9rivgWJrXV9lChoBmgJaA9DCHbj3ZGxTV9AlIaUUpRoFU3oA2gWR0CD23L2YfGNdX2UKGgGaAloD0MIxy3m54b9YECUhpRSlGgVTegDaBZHQIPg3b48EFJ1fZQoaAZoCWgPQwhmhLcHoZxiQJSGlFKUaBVN6ANoFkdAg+GyYXwb2nV9lChoBmgJaA9DCI7MI38wHDdAlIaUUpRoFU01AWgWR0CD+LugHu7ZdX2UKGgGaAloD0MIexSuR+FfXkCUhpRSlGgVTegDaBZHQIP610knkT91fZQoaAZoCWgPQwjmeAWiJ6JkQJSGlFKUaBVN6ANoFkdAhAjbG3nZCnV9lChoBmgJaA9DCDmc+dUcRmFAlIaUUpRoFU3oA2gWR0CEDfM5fdAPdX2UKGgGaAloD0MIqDgOvFqBZUCUhpRSlGgVTegDaBZHQIQSKrksBhh1fZQoaAZoCWgPQwi8PJ0rSs9hQJSGlFKUaBVN6ANoFkdAhCGoUahpQHV9lChoBmgJaA9DCK358ZcW7TFAlIaUUpRoFU0/AWgWR0CEO07gbZOBdX2UKGgGaAloD0MIyatzDEjbZkCUhpRSlGgVTegDaBZHQIRr912aDwp1fZQoaAZoCWgPQwh1yw7xj/VhQJSGlFKUaBVN6ANoFkdAhHJ3iR4hU3V9lChoBmgJaA9DCNKPhlPmMWRAlIaUUpRoFU3oA2gWR0CEdt4N7SiNdX2UKGgGaAloD0MIHozYJ4AvX0CUhpRSlGgVTegDaBZHQISORWaMJhR1fZQoaAZoCWgPQwjHnGfsywNhQJSGlFKUaBVN6ANoFkdAhJM4WcjJMnV9lChoBmgJaA9DCB0+6USCwV1AlIaUUpRoFU3oA2gWR0CEpJf2saKldX2UKGgGaAloD0MIrkZ2pWX8Y0CUhpRSlGgVTegDaBZHQISlVzGPxQV1fZQoaAZoCWgPQwj59xkXDr1fQJSGlFKUaBVN6ANoFkdAhKX0tZmqYXV9lChoBmgJaA9DCJcfuMoTgmZAlIaUUpRoFU3oA2gWR0CErCUSIxgzdX2UKGgGaAloD0MIf/lkxfDLYECUhpRSlGgVTegDaBZHQIStEfcN6Pd1fZQoaAZoCWgPQwha9iSwOUNBQJSGlFKUaBVL+mgWR0CEvhBomG/OdX2UKGgGaAloD0MIq5MzFPfGYkCUhpRSlGgVTegDaBZHQITEYixFAml1fZQoaAZoCWgPQwi2uTE94axgQJSGlFKUaBVN6ANoFkdAhNTa0QbuMXV9lChoBmgJaA9DCBpQb0bNC2RAlIaUUpRoFU3oA2gWR0CE2h0dRzikdX2UKGgGaAloD0MIlGjJ4+kQY0CUhpRSlGgVTegDaBZHQITeqLQ5WBB1fZQoaAZoCWgPQwhz1TxH5NZhQJSGlFKUaBVN6ANoFkdAhO+dDQZ4wHV9lChoBmgJaA9DCO2CwTV3hCLAlIaUUpRoFU1iAWgWR0CE8NSk0rLAdX2UKGgGaAloD0MIK08g7JT6YECUhpRSlGgVTegDaBZHQIUJc4Pwuul1fZQoaAZoCWgPQwgaM4l6wXVFQJSGlFKUaBVNcAFoFkdAhS6i7sfJWHV9lChoBmgJaA9DCKqc9pQcx2NAlIaUUpRoFU3oA2gWR0CFNOkoF3Y+dX2UKGgGaAloD0MI16VG6OeqY0CUhpRSlGgVTegDaBZHQIVAwyuZCv51fZQoaAZoCWgPQwi4c2Gkl9lgQJSGlFKUaBVN6ANoFkdAhUVCkGiYcHV9lChoBmgJaA9DCDPgLCVLRmNAlIaUUpRoFU3oA2gWR0CFYZSQYDT0dX2UKGgGaAloD0MID5iHTHl9YUCUhpRSlGgVTegDaBZHQIVvNZTyaux1fZQoaAZoCWgPQwhOgGH585tfQJSGlFKUaBVN6ANoFkdAhXARxDLKWHV9lChoBmgJaA9DCAkVHF4QA2FAlIaUUpRoFU3oA2gWR0CFcL1Ng0CSdX2UKGgGaAloD0MIV7CNeLJHXkCUhpRSlGgVTegDaBZHQIV8nuJDVpd1fZQoaAZoCWgPQwgzMshdhCE3QJSGlFKUaBVNMwFoFkdAhYBB8QZn+XV9lChoBmgJaA9DCOigSzh0eGNAlIaUUpRoFU3oA2gWR0CFj+gM+eOGdX2UKGgGaAloD0MIHHv2XCYmZkCUhpRSlGgVTegDaBZHQIWW2X7cfvF1fZQoaAZoCWgPQwgv3o/br/ZgQJSGlFKUaBVN6ANoFkdAhaivhQ3xWnV9lChoBmgJaA9DCHaKVYOw12NAlIaUUpRoFU3oA2gWR0CFrlHAAQxvdX2UKGgGaAloD0MIl1ZD4h5IWkCUhpRSlGgVTegDaBZHQIXEUBltj1B1fZQoaAZoCWgPQwh7MZQT7chfQJSGlFKUaBVN6ANoFkdAhcWoSlFc6nV9lChoBmgJaA9DCKMh41EqmGBAlIaUUpRoFU3oA2gWR0CF4PlI3BHkdX2UKGgGaAloD0MIMSQnE7eqW0CUhpRSlGgVTegDaBZHQIYMF+so2GZ1fZQoaAZoCWgPQwjJ5T+kX/VjQJSGlFKUaBVN6ANoFkdAhhNYOlO45XV9lChoBmgJaA9DCBnIs8s3eWJAlIaUUpRoFU3oA2gWR0CGJWTr3TNMdX2UKGgGaAloD0MIqDl5kQl4XUCUhpRSlGgVTegDaBZHQIZHpHNHH3l1fZQoaAZoCWgPQwiNXaJ66wxwQJSGlFKUaBVN1QJoFkdAhlWqVY6nznV9lChoBmgJaA9DCBPwayQJqVZAlIaUUpRoFU3oA2gWR0CGVsEC/47BdX2UKGgGaAloD0MI/3ivWhkeYkCUhpRSlGgVTegDaBZHQIZXtZs9B8h1fZQoaAZoCWgPQwiuEcE4OOlgQJSGlFKUaBVN6ANoFkdAhliDXWe6I3V9lChoBmgJaA9DCI0KnGwD8ltAlIaUUpRoFU3oA2gWR0CGZiz4UN8WdX2UKGgGaAloD0MINSbEXFIPW0CUhpRSlGgVTegDaBZHQIZqE7U5MlF1fZQoaAZoCWgPQwhjQswlVTFgQJSGlFKUaBVN6ANoFkdAhnRg0j1PFnV9lChoBmgJaA9DCGYyHM/nj21AlIaUUpRoFU2wAWgWR0CGfK+3Ytg8dX2UKGgGaAloD0MIIsSVs3d2X0CUhpRSlGgVTegDaBZHQIZ/0ZJkGzN1fZQoaAZoCWgPQwhmTMEaZ+lgQJSGlFKUaBVN6ANoFkdAhpS6oVEeAHV9lChoBmgJaA9DCBTnqKPjgFxAlIaUUpRoFU3oA2gWR0CGpJUdaMaTdX2UKGgGaAloD0MIrFYm/FKDXECUhpRSlGgVTegDaBZHQIalvnZCfHx1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 980,
79
+ "n_steps": 128,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5b632fab30e0f8617a1aea398683596a05ebd761e34bdb102146672fa8eddf2d
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:019e7ea6b8301265406cb32e74fe0d0f6b9c3d180c85884717471829f7ddf4a0
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e166ad16a274d5c24d9281ed52a8bd94b976b588a856eade7bc51a7280cac8b
3
+ size 224651
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 70.31509425383774, "std_reward": 76.60467993582479, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T23:31:57.871201"}