ColabPro commited on
Commit
68616e1
·
1 Parent(s): 1810730

Upload PPO LunarLander-v2 trained agent

Browse files
.gitattributes CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
+ *.mp4 filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - metrics:
12
+ - type: mean_reward
13
+ value: 198.09 +/- 20.23
14
+ name: mean_reward
15
+ task:
16
+ type: reinforcement-learning
17
+ name: reinforcement-learning
18
+ dataset:
19
+ name: LunarLander-v2
20
+ type: LunarLander-v2
21
+ ---
22
+
23
+ # **PPO** Agent playing **LunarLander-v2**
24
+ This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
25
+
26
+ ## Usage (with Stable-baselines3)
27
+ TODO: Add your code
28
+
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70214bbb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70214bbc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70214bbcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70214bbd40>", "_build": "<function ActorCriticPolicy._build at 0x7f70214bbdd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f70214bbe60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70214bbef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70214bbf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70214c0050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70214c00e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70214c0170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7021500de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 503808, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652741797.2050438, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpHx73uX58/DokNvwqqFb/tJbi8NF1KvgAAAAAAAAAAwGjava6XpT5jWs49xEAnvjjsIT21eXG7AAAAAAAAAAAzt7+8vDtvP3XaTb2VMna+iLKHPLirhjwAAAAAAAAAAJM1Fr5MgI8+G6JZPgHSOr69W5M9cq4MvAAAAAAAAAAA4L9RPvaEYj3KEdc8skQ+vpeJJr2SBTG9AAAAAAAAAAAzzsw84frnNwDszTzPYi48NxMyuYaRQjoAAAAAAAAAAKbwy72sL6s/xkMFv+Chs77mJQW9c25QvgAAAAAAAAAAZqIyPOFClrr+LAE+tRcVvpXvATxD7e6+AAAAAAAAgD8G9LI+cTJBP/zfojtxh1++fd3ZPXdxkD0AAAAAAAAAANqCBT64PpA6DZzzuwI/0bnqTog8XFe5ugAAgD8AAIA/5k9KPWG8lD9zISQ9E92BvinUmj3cXpi9AAAAAAAAAABN+3U9PRATPvV7QL2ulhC+ewwPvHQFHT0AAAAAAAAAAJqnmT2sxIQ+T6EKPZQOCL7jr6A8b/2GPQAAAAAAAAAAMwnHvSXZgT/4tiy9VvQxvuKpv72IEnA9AAAAAAAAAADQYZo+CUpyPqKKO74jMq+9jRDdvEJmtLwAAAAAAAAAAKZqwT3rEK4/tEAqP0r8Yb4EGeA8Mjg8PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQBQxQ2wbECUhpRSlIwBbJRNogGMAXSUR0B+RgXO4XoDdX2UKGgGaAloD0MI/zwNGKTrbUCUhpRSlGgVTYoBaBZHQH5IiUC7sfJ1fZQoaAZoCWgPQwgYPiKmxOZpQJSGlFKUaBVN5AFoFkdAfk3uv2Xb/XV9lChoBmgJaA9DCCxJnut7YG9AlIaUUpRoFU2bAWgWR0B+UJMWXTmXdX2UKGgGaAloD0MIcSGP4IaKcUCUhpRSlGgVTW8BaBZHQH5bd3bEgnt1fZQoaAZoCWgPQwhCJEOOrf1tQJSGlFKUaBVNvgFoFkdAfmDyhzvJBHV9lChoBmgJaA9DCKsGYW43H3BAlIaUUpRoFU25AWgWR0B+YaVyFPBSdX2UKGgGaAloD0MI4J7nTxs1GMCUhpRSlGgVTTYBaBZHQH5h/r8iwB51fZQoaAZoCWgPQwhj7e9sD19tQJSGlFKUaBVNqAFoFkdAfnqenQ6ZIHV9lChoBmgJaA9DCBNhw9OrO2xAlIaUUpRoFU2wAWgWR0B+f0hmoR7JdX2UKGgGaAloD0MIfuVBegqFbUCUhpRSlGgVTeYBaBZHQH6D3eBQN1B1fZQoaAZoCWgPQwhp44i1+IxsQJSGlFKUaBVNhwFoFkdAfoiCuU2UCHV9lChoBmgJaA9DCEGbHD5pj25AlIaUUpRoFU1uAWgWR0B+i/bdrO7hdX2UKGgGaAloD0MIqU9yh42ccECUhpRSlGgVTXABaBZHQH6WRo7FKkF1fZQoaAZoCWgPQwisUnqml95vQJSGlFKUaBVNAwJoFkdAfpl/J/5Ly3V9lChoBmgJaA9DCAU0ETa8CWtAlIaUUpRoFU38AWgWR0B+tdhkRSP2dX2UKGgGaAloD0MIpOL/jqjlb0CUhpRSlGgVTbYBaBZHQH63ugDifg91fZQoaAZoCWgPQwjmP6TfPpdvQJSGlFKUaBVNiQFoFkdAfrfvA44p+nV9lChoBmgJaA9DCM11Gmkp+m1AlIaUUpRoFU2eAWgWR0B+uOAZsKsudX2UKGgGaAloD0MI7yB2ptBlb0CUhpRSlGgVTYsBaBZHQH7JX2ZiNKh1fZQoaAZoCWgPQwj0/GmjOlFuQJSGlFKUaBVNtAFoFkdAfsqNg0CRwXV9lChoBmgJaA9DCEhRZ+4hymxAlIaUUpRoFU2bAWgWR0B+y/tJFspHdX2UKGgGaAloD0MIBTV8C6tvcUCUhpRSlGgVTbQBaBZHQH7PbgbZOBV1fZQoaAZoCWgPQwjzzMth98VuQJSGlFKUaBVNnQFoFkdAftNQkona4HV9lChoBmgJaA9DCHoYWp2c/WpAlIaUUpRoFU2oAWgWR0B+2aO2iL2pdX2UKGgGaAloD0MIzH9Iv73lcECUhpRSlGgVTXUBaBZHQH7ewZflZHN1fZQoaAZoCWgPQwjTTPc6qXtdQJSGlFKUaBVN6ANoFkdAfuAmR/3Fk3V9lChoBmgJaA9DCOohGt1BQGlAlIaUUpRoFU2iAWgWR0B+9NugpSaWdX2UKGgGaAloD0MIOgK4WTyTbUCUhpRSlGgVTRcCaBZHQH8DS8OCoTB1fZQoaAZoCWgPQwimnZrLjdhuQJSGlFKUaBVNhwFoFkdAfwtacqe9SXV9lChoBmgJaA9DCP2/6sjRJHBAlIaUUpRoFU3TAWgWR0B/C467ulXSdX2UKGgGaAloD0MIou4DkBoVcECUhpRSlGgVTX4BaBZHQH8Lmw3YL9d1fZQoaAZoCWgPQwjRzf5A+WRxQJSGlFKUaBVN8AFoFkdAfxNvkili0HV9lChoBmgJaA9DCB7EzhQ6r2lAlIaUUpRoFU22AWgWR0B/FQ3R5TqCdX2UKGgGaAloD0MIZr0YyglhbkCUhpRSlGgVTc0BaBZHQH8ZmmHgxah1fZQoaAZoCWgPQwg1lxsMdShxQJSGlFKUaBVNfQFoFkdAfxuu+RHPNXV9lChoBmgJaA9DCIP3VbmQaHBAlIaUUpRoFU2jAWgWR0B/NhPP9kz5dX2UKGgGaAloD0MIDmq/tRPRbUCUhpRSlGgVTY4BaBZHQH82G7e2uxN1fZQoaAZoCWgPQwj1EmOZ/ghxQJSGlFKUaBVNiQFoFkdAfzit6X0GvHV9lChoBmgJaA9DCMh9q3ViQ3BAlIaUUpRoFU3XAWgWR0B/PEWuX/o8dX2UKGgGaAloD0MIrYkFviIabECUhpRSlGgVTaYBaBZHQH9CgJHAh0R1fZQoaAZoCWgPQwjdXPxtDy9wQJSGlFKUaBVNfgFoFkdAf0R3VCojwHV9lChoBmgJaA9DCGIvFLCdhW9AlIaUUpRoFU2fAWgWR0B/RvxUedTYdX2UKGgGaAloD0MIUKkSZe85bECUhpRSlGgVTbIBaBZHQH9Ii704BFN1fZQoaAZoCWgPQwifknNiT9FwQJSGlFKUaBVNagFoFkdAf047xd6cAnV9lChoBmgJaA9DCH15AfbRETHAlIaUUpRoFU1EAWgWR0B/T0hLXcxkdX2UKGgGaAloD0MIqkVEMXk1a0CUhpRSlGgVTVQBaBZHQH9rQCGN70F1fZQoaAZoCWgPQwjP29jsyDZsQJSGlFKUaBVNkQFoFkdAf22yad+Xq3V9lChoBmgJaA9DCDgR/dp602xAlIaUUpRoFU2UAWgWR0B/bhV5rxiHdX2UKGgGaAloD0MIXRq/8EqSbECUhpRSlGgVTYcBaBZHQH91WsNlRP51fZQoaAZoCWgPQwgmGTkL+zFtQJSGlFKUaBVNeQFoFkdAf3faFVT723V9lChoBmgJaA9DCCgNNQrJNm5AlIaUUpRoFU16AWgWR0B/ehYNiH6/dX2UKGgGaAloD0MIsIwN3Ww8bUCUhpRSlGgVTW4BaBZHQH+AUDhcZ+B1fZQoaAZoCWgPQwhQptHkYkBvQJSGlFKUaBVNdQFoFkdAf4Fb/wRXfnV9lChoBmgJaA9DCOmBj8GKNGxAlIaUUpRoFU1xAWgWR0B/h03rD63zdX2UKGgGaAloD0MIu9bepypzb0CUhpRSlGgVTVUBaBZHQH+JJL26ClJ1fZQoaAZoCWgPQwicGJKTCdpsQJSGlFKUaBVNnQFoFkdAf4ncE/0NBnV9lChoBmgJaA9DCH2SO2yiG2pAlIaUUpRoFU13AWgWR0B/j24oZydXdX2UKGgGaAloD0MI9SudD0+Ab0CUhpRSlGgVTYsBaBZHQH+oQmReTmp1fZQoaAZoCWgPQwj/0MyTq3pwQJSGlFKUaBVNgwFoFkdAf6zHB1s+FHV9lChoBmgJaA9DCIBkOnR6j29AlIaUUpRoFU26AWgWR0B/rZTgl4TsdX2UKGgGaAloD0MIpDmy8kvZbUCUhpRSlGgVTbMBaBZHQH+1mFJxvNx1fZQoaAZoCWgPQwhNS6yMRkJwQJSGlFKUaBVNfwFoFkdAf7onL7oB73V9lChoBmgJaA9DCIeIm1OJuXBAlIaUUpRoFU2TAWgWR0B/us0Nz8xcdX2UKGgGaAloD0MIToBh+XNNa0CUhpRSlGgVTXYBaBZHQH/B64c3l0Z1fZQoaAZoCWgPQwgVH5+QHe5wQJSGlFKUaBVNkwFoFkdAf8k/bTMJQnV9lChoBmgJaA9DCPIGmPmOFW9AlIaUUpRoFU2AAWgWR0B/4EplSS/1dX2UKGgGaAloD0MIhe6SOCsmakCUhpRSlGgVTc4BaBZHQH/ge2qkuYh1fZQoaAZoCWgPQwgukQvOYLNsQJSGlFKUaBVNiwFoFkdAf+D2Xsw+MnV9lChoBmgJaA9DCCbICKiwF3BAlIaUUpRoFU0dAmgWR0B/5SG1x82KdX2UKGgGaAloD0MIgEV+/RA9akCUhpRSlGgVTWkBaBZHQH/leLehwl11fZQoaAZoCWgPQwjBdFq3wZJwQJSGlFKUaBVNRgFoFkdAf+aOiFj/dnV9lChoBmgJaA9DCB9N9WT+t2tAlIaUUpRoFU2FAWgWR0B/6K56MR6GdX2UKGgGaAloD0MIaauSyD6rbUCUhpRSlGgVTaMBaBZHQH/qu0Xxe9l1fZQoaAZoCWgPQwheZ0P+2cFwQJSGlFKUaBVNbQFoFkdAf/Zd7fHgg3V9lChoBmgJaA9DCKhtwyiIknBAlIaUUpRoFU2YAWgWR0B/92nqFAVxdX2UKGgGaAloD0MIYD5ZMVxWcECUhpRSlGgVTXsBaBZHQH/3sa86FM91fZQoaAZoCWgPQwgix9YzBERvQJSGlFKUaBVNZAFoFkdAf/xgqEvkBHV9lChoBmgJaA9DCOlfksoUc/0/lIaUUpRoFU1qAWgWR0CAChUzbeuWdX2UKGgGaAloD0MIGSDRBIo/a0CUhpRSlGgVTXwBaBZHQIALMMI/qxF1fZQoaAZoCWgPQwizYU1l0d1uQJSGlFKUaBVNbAFoFkdAgA4hQemvXHV9lChoBmgJaA9DCMLc7uU+7T5AlIaUUpRoFU0xAWgWR0CAEgV+qioLdX2UKGgGaAloD0MIKo2Y2efJbkCUhpRSlGgVTV8BaBZHQIATYydnTRZ1fZQoaAZoCWgPQwi5GW7A565vQJSGlFKUaBVNiwFoFkdAgBSwyIpH7XV9lChoBmgJaA9DCB6M2CcA5GlAlIaUUpRoFU15AWgWR0CAFeApazNVdX2UKGgGaAloD0MIwCUA/xRMb0CUhpRSlGgVTYwBaBZHQIAXG1F6Rhd1fZQoaAZoCWgPQwjkEHFzqjBvQJSGlFKUaBVNWwFoFkdAgBfG5tm+TXV9lChoBmgJaA9DCKmgoupXT25AlIaUUpRoFU1zAWgWR0CAF9ssQNCrdX2UKGgGaAloD0MIRu7p6s4rcECUhpRSlGgVTXkBaBZHQIAavuLJjlR1fZQoaAZoCWgPQwizDHGsi8JvQJSGlFKUaBVNtQFoFkdAgBynH3lCC3V9lChoBmgJaA9DCCZw626eMXBAlIaUUpRoFU1UAWgWR0CAKEbnX/YKdX2UKGgGaAloD0MIp658ludcbECUhpRSlGgVTV0BaBZHQIAoS8xsVL11fZQoaAZoCWgPQwhU/yCSIX8vQJSGlFKUaBVNOAFoFkdAgCiPf8/D+HV9lChoBmgJaA9DCLggW5YvwXBAlIaUUpRoFU11AWgWR0CAL6sEJSiudX2UKGgGaAloD0MIQgWHF0T2bUCUhpRSlGgVTW8BaBZHQIAwXQyAQQN1fZQoaAZoCWgPQwg4LA386PZxQJSGlFKUaBVN5QFoFkdAgDMjTa0x/XV9lChoBmgJaA9DCDpBmxy+OWxAlIaUUpRoFU2RAWgWR0CANnnjhky2dX2UKGgGaAloD0MIIa6cvbOcbkCUhpRSlGgVTVcBaBZHQIA5l/Yrauh1fZQoaAZoCWgPQwhZFkz80ZBtQJSGlFKUaBVNhAFoFkdAgDnI2wV0tHV9lChoBmgJaA9DCBGpaRfTYG1AlIaUUpRoFU15AWgWR0CAOhbnoxHodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 256, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07889a2a7cfedcb11e63590e04b84285cd0f7ab2fd6c80b7fac30b494f243639
3
+ size 144047
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.5.0
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70214bbb90>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70214bbc20>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70214bbcb0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70214bbd40>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7f70214bbdd0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7f70214bbe60>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70214bbef0>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7f70214bbf80>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70214c0050>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70214c00e0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70214c0170>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7f7021500de0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": null
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": null
43
+ },
44
+ "n_envs": 16,
45
+ "num_timesteps": 503808,
46
+ "_total_timesteps": 500000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1652741797.2050438,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpHx73uX58/DokNvwqqFb/tJbi8NF1KvgAAAAAAAAAAwGjava6XpT5jWs49xEAnvjjsIT21eXG7AAAAAAAAAAAzt7+8vDtvP3XaTb2VMna+iLKHPLirhjwAAAAAAAAAAJM1Fr5MgI8+G6JZPgHSOr69W5M9cq4MvAAAAAAAAAAA4L9RPvaEYj3KEdc8skQ+vpeJJr2SBTG9AAAAAAAAAAAzzsw84frnNwDszTzPYi48NxMyuYaRQjoAAAAAAAAAAKbwy72sL6s/xkMFv+Chs77mJQW9c25QvgAAAAAAAAAAZqIyPOFClrr+LAE+tRcVvpXvATxD7e6+AAAAAAAAgD8G9LI+cTJBP/zfojtxh1++fd3ZPXdxkD0AAAAAAAAAANqCBT64PpA6DZzzuwI/0bnqTog8XFe5ugAAgD8AAIA/5k9KPWG8lD9zISQ9E92BvinUmj3cXpi9AAAAAAAAAABN+3U9PRATPvV7QL2ulhC+ewwPvHQFHT0AAAAAAAAAAJqnmT2sxIQ+T6EKPZQOCL7jr6A8b/2GPQAAAAAAAAAAMwnHvSXZgT/4tiy9VvQxvuKpv72IEnA9AAAAAAAAAADQYZo+CUpyPqKKO74jMq+9jRDdvEJmtLwAAAAAAAAAAKZqwT3rEK4/tEAqP0r8Yb4EGeA8Mjg8PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.007616000000000067,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQBQxQ2wbECUhpRSlIwBbJRNogGMAXSUR0B+RgXO4XoDdX2UKGgGaAloD0MI/zwNGKTrbUCUhpRSlGgVTYoBaBZHQH5IiUC7sfJ1fZQoaAZoCWgPQwgYPiKmxOZpQJSGlFKUaBVN5AFoFkdAfk3uv2Xb/XV9lChoBmgJaA9DCCxJnut7YG9AlIaUUpRoFU2bAWgWR0B+UJMWXTmXdX2UKGgGaAloD0MIcSGP4IaKcUCUhpRSlGgVTW8BaBZHQH5bd3bEgnt1fZQoaAZoCWgPQwhCJEOOrf1tQJSGlFKUaBVNvgFoFkdAfmDyhzvJBHV9lChoBmgJaA9DCKsGYW43H3BAlIaUUpRoFU25AWgWR0B+YaVyFPBSdX2UKGgGaAloD0MI4J7nTxs1GMCUhpRSlGgVTTYBaBZHQH5h/r8iwB51fZQoaAZoCWgPQwhj7e9sD19tQJSGlFKUaBVNqAFoFkdAfnqenQ6ZIHV9lChoBmgJaA9DCBNhw9OrO2xAlIaUUpRoFU2wAWgWR0B+f0hmoR7JdX2UKGgGaAloD0MIfuVBegqFbUCUhpRSlGgVTeYBaBZHQH6D3eBQN1B1fZQoaAZoCWgPQwhp44i1+IxsQJSGlFKUaBVNhwFoFkdAfoiCuU2UCHV9lChoBmgJaA9DCEGbHD5pj25AlIaUUpRoFU1uAWgWR0B+i/bdrO7hdX2UKGgGaAloD0MIqU9yh42ccECUhpRSlGgVTXABaBZHQH6WRo7FKkF1fZQoaAZoCWgPQwisUnqml95vQJSGlFKUaBVNAwJoFkdAfpl/J/5Ly3V9lChoBmgJaA9DCAU0ETa8CWtAlIaUUpRoFU38AWgWR0B+tdhkRSP2dX2UKGgGaAloD0MIpOL/jqjlb0CUhpRSlGgVTbYBaBZHQH63ugDifg91fZQoaAZoCWgPQwjmP6TfPpdvQJSGlFKUaBVNiQFoFkdAfrfvA44p+nV9lChoBmgJaA9DCM11Gmkp+m1AlIaUUpRoFU2eAWgWR0B+uOAZsKsudX2UKGgGaAloD0MI7yB2ptBlb0CUhpRSlGgVTYsBaBZHQH7JX2ZiNKh1fZQoaAZoCWgPQwj0/GmjOlFuQJSGlFKUaBVNtAFoFkdAfsqNg0CRwXV9lChoBmgJaA9DCEhRZ+4hymxAlIaUUpRoFU2bAWgWR0B+y/tJFspHdX2UKGgGaAloD0MIBTV8C6tvcUCUhpRSlGgVTbQBaBZHQH7PbgbZOBV1fZQoaAZoCWgPQwjzzMth98VuQJSGlFKUaBVNnQFoFkdAftNQkona4HV9lChoBmgJaA9DCHoYWp2c/WpAlIaUUpRoFU2oAWgWR0B+2aO2iL2pdX2UKGgGaAloD0MIzH9Iv73lcECUhpRSlGgVTXUBaBZHQH7ewZflZHN1fZQoaAZoCWgPQwjTTPc6qXtdQJSGlFKUaBVN6ANoFkdAfuAmR/3Fk3V9lChoBmgJaA9DCOohGt1BQGlAlIaUUpRoFU2iAWgWR0B+9NugpSaWdX2UKGgGaAloD0MIOgK4WTyTbUCUhpRSlGgVTRcCaBZHQH8DS8OCoTB1fZQoaAZoCWgPQwimnZrLjdhuQJSGlFKUaBVNhwFoFkdAfwtacqe9SXV9lChoBmgJaA9DCP2/6sjRJHBAlIaUUpRoFU3TAWgWR0B/C467ulXSdX2UKGgGaAloD0MIou4DkBoVcECUhpRSlGgVTX4BaBZHQH8Lmw3YL9d1fZQoaAZoCWgPQwjRzf5A+WRxQJSGlFKUaBVN8AFoFkdAfxNvkili0HV9lChoBmgJaA9DCB7EzhQ6r2lAlIaUUpRoFU22AWgWR0B/FQ3R5TqCdX2UKGgGaAloD0MIZr0YyglhbkCUhpRSlGgVTc0BaBZHQH8ZmmHgxah1fZQoaAZoCWgPQwg1lxsMdShxQJSGlFKUaBVNfQFoFkdAfxuu+RHPNXV9lChoBmgJaA9DCIP3VbmQaHBAlIaUUpRoFU2jAWgWR0B/NhPP9kz5dX2UKGgGaAloD0MIDmq/tRPRbUCUhpRSlGgVTY4BaBZHQH82G7e2uxN1fZQoaAZoCWgPQwj1EmOZ/ghxQJSGlFKUaBVNiQFoFkdAfzit6X0GvHV9lChoBmgJaA9DCMh9q3ViQ3BAlIaUUpRoFU3XAWgWR0B/PEWuX/o8dX2UKGgGaAloD0MIrYkFviIabECUhpRSlGgVTaYBaBZHQH9CgJHAh0R1fZQoaAZoCWgPQwjdXPxtDy9wQJSGlFKUaBVNfgFoFkdAf0R3VCojwHV9lChoBmgJaA9DCGIvFLCdhW9AlIaUUpRoFU2fAWgWR0B/RvxUedTYdX2UKGgGaAloD0MIUKkSZe85bECUhpRSlGgVTbIBaBZHQH9Ii704BFN1fZQoaAZoCWgPQwifknNiT9FwQJSGlFKUaBVNagFoFkdAf047xd6cAnV9lChoBmgJaA9DCH15AfbRETHAlIaUUpRoFU1EAWgWR0B/T0hLXcxkdX2UKGgGaAloD0MIqkVEMXk1a0CUhpRSlGgVTVQBaBZHQH9rQCGN70F1fZQoaAZoCWgPQwjP29jsyDZsQJSGlFKUaBVNkQFoFkdAf22yad+Xq3V9lChoBmgJaA9DCDgR/dp602xAlIaUUpRoFU2UAWgWR0B/bhV5rxiHdX2UKGgGaAloD0MIXRq/8EqSbECUhpRSlGgVTYcBaBZHQH91WsNlRP51fZQoaAZoCWgPQwgmGTkL+zFtQJSGlFKUaBVNeQFoFkdAf3faFVT723V9lChoBmgJaA9DCCgNNQrJNm5AlIaUUpRoFU16AWgWR0B/ehYNiH6/dX2UKGgGaAloD0MIsIwN3Ww8bUCUhpRSlGgVTW4BaBZHQH+AUDhcZ+B1fZQoaAZoCWgPQwhQptHkYkBvQJSGlFKUaBVNdQFoFkdAf4Fb/wRXfnV9lChoBmgJaA9DCOmBj8GKNGxAlIaUUpRoFU1xAWgWR0B/h03rD63zdX2UKGgGaAloD0MIu9bepypzb0CUhpRSlGgVTVUBaBZHQH+JJL26ClJ1fZQoaAZoCWgPQwicGJKTCdpsQJSGlFKUaBVNnQFoFkdAf4ncE/0NBnV9lChoBmgJaA9DCH2SO2yiG2pAlIaUUpRoFU13AWgWR0B/j24oZydXdX2UKGgGaAloD0MI9SudD0+Ab0CUhpRSlGgVTYsBaBZHQH+oQmReTmp1fZQoaAZoCWgPQwj/0MyTq3pwQJSGlFKUaBVNgwFoFkdAf6zHB1s+FHV9lChoBmgJaA9DCIBkOnR6j29AlIaUUpRoFU26AWgWR0B/rZTgl4TsdX2UKGgGaAloD0MIpDmy8kvZbUCUhpRSlGgVTbMBaBZHQH+1mFJxvNx1fZQoaAZoCWgPQwhNS6yMRkJwQJSGlFKUaBVNfwFoFkdAf7onL7oB73V9lChoBmgJaA9DCIeIm1OJuXBAlIaUUpRoFU2TAWgWR0B/us0Nz8xcdX2UKGgGaAloD0MIToBh+XNNa0CUhpRSlGgVTXYBaBZHQH/B64c3l0Z1fZQoaAZoCWgPQwgVH5+QHe5wQJSGlFKUaBVNkwFoFkdAf8k/bTMJQnV9lChoBmgJaA9DCPIGmPmOFW9AlIaUUpRoFU2AAWgWR0B/4EplSS/1dX2UKGgGaAloD0MIhe6SOCsmakCUhpRSlGgVTc4BaBZHQH/ge2qkuYh1fZQoaAZoCWgPQwgukQvOYLNsQJSGlFKUaBVNiwFoFkdAf+D2Xsw+MnV9lChoBmgJaA9DCCbICKiwF3BAlIaUUpRoFU0dAmgWR0B/5SG1x82KdX2UKGgGaAloD0MIgEV+/RA9akCUhpRSlGgVTWkBaBZHQH/leLehwl11fZQoaAZoCWgPQwjBdFq3wZJwQJSGlFKUaBVNRgFoFkdAf+aOiFj/dnV9lChoBmgJaA9DCB9N9WT+t2tAlIaUUpRoFU2FAWgWR0B/6K56MR6GdX2UKGgGaAloD0MIaauSyD6rbUCUhpRSlGgVTaMBaBZHQH/qu0Xxe9l1fZQoaAZoCWgPQwheZ0P+2cFwQJSGlFKUaBVNbQFoFkdAf/Zd7fHgg3V9lChoBmgJaA9DCKhtwyiIknBAlIaUUpRoFU2YAWgWR0B/92nqFAVxdX2UKGgGaAloD0MIYD5ZMVxWcECUhpRSlGgVTXsBaBZHQH/3sa86FM91fZQoaAZoCWgPQwgix9YzBERvQJSGlFKUaBVNZAFoFkdAf/xgqEvkBHV9lChoBmgJaA9DCOlfksoUc/0/lIaUUpRoFU1qAWgWR0CAChUzbeuWdX2UKGgGaAloD0MIGSDRBIo/a0CUhpRSlGgVTXwBaBZHQIALMMI/qxF1fZQoaAZoCWgPQwizYU1l0d1uQJSGlFKUaBVNbAFoFkdAgA4hQemvXHV9lChoBmgJaA9DCMLc7uU+7T5AlIaUUpRoFU0xAWgWR0CAEgV+qioLdX2UKGgGaAloD0MIKo2Y2efJbkCUhpRSlGgVTV8BaBZHQIATYydnTRZ1fZQoaAZoCWgPQwi5GW7A565vQJSGlFKUaBVNiwFoFkdAgBSwyIpH7XV9lChoBmgJaA9DCB6M2CcA5GlAlIaUUpRoFU15AWgWR0CAFeApazNVdX2UKGgGaAloD0MIwCUA/xRMb0CUhpRSlGgVTYwBaBZHQIAXG1F6Rhd1fZQoaAZoCWgPQwjkEHFzqjBvQJSGlFKUaBVNWwFoFkdAgBfG5tm+TXV9lChoBmgJaA9DCKmgoupXT25AlIaUUpRoFU1zAWgWR0CAF9ssQNCrdX2UKGgGaAloD0MIRu7p6s4rcECUhpRSlGgVTXkBaBZHQIAavuLJjlR1fZQoaAZoCWgPQwizDHGsi8JvQJSGlFKUaBVNtQFoFkdAgBynH3lCC3V9lChoBmgJaA9DCCZw626eMXBAlIaUUpRoFU1UAWgWR0CAKEbnX/YKdX2UKGgGaAloD0MIp658ludcbECUhpRSlGgVTV0BaBZHQIAoS8xsVL11fZQoaAZoCWgPQwhU/yCSIX8vQJSGlFKUaBVNOAFoFkdAgCiPf8/D+HV9lChoBmgJaA9DCLggW5YvwXBAlIaUUpRoFU11AWgWR0CAL6sEJSiudX2UKGgGaAloD0MIQgWHF0T2bUCUhpRSlGgVTW8BaBZHQIAwXQyAQQN1fZQoaAZoCWgPQwg4LA386PZxQJSGlFKUaBVN5QFoFkdAgDMjTa0x/XV9lChoBmgJaA9DCDpBmxy+OWxAlIaUUpRoFU2RAWgWR0CANnnjhky2dX2UKGgGaAloD0MIIa6cvbOcbkCUhpRSlGgVTVcBaBZHQIA5l/Yrauh1fZQoaAZoCWgPQwhZFkz80ZBtQJSGlFKUaBVNhAFoFkdAgDnI2wV0tHV9lChoBmgJaA9DCBGpaRfTYG1AlIaUUpRoFU15AWgWR0CAOhbnoxHodWUu"
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 492,
79
+ "n_steps": 256,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0f25944cac958293f4724eb06ea29e668c6df626098822595e8e3f989100403c
3
+ size 84829
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:01b44a56386977fa65d42ed21cad0f339a1ebb1b53869abee34f1dc66737389c
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
2
+ Python: 3.7.13
3
+ Stable-Baselines3: 1.5.0
4
+ PyTorch: 1.11.0+cu113
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:142ed1e3a6a643bdbd806b75f9c152b0c0cb5b2cd087e513779ef919ef0098c5
3
+ size 235545
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 198.09203960821685, "std_reward": 20.232212822532542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T23:07:58.041442"}