Upload PPO LunarLander-v2 trained agent
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 198.09 +/- 20.23
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f70214bbb90>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70214bbc20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70214bbcb0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70214bbd40>", "_build": "<function ActorCriticPolicy._build at 0x7f70214bbdd0>", "forward": "<function ActorCriticPolicy.forward at 0x7f70214bbe60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70214bbef0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f70214bbf80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70214c0050>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70214c00e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70214c0170>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f7021500de0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 503808, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652741797.2050438, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpHx73uX58/DokNvwqqFb/tJbi8NF1KvgAAAAAAAAAAwGjava6XpT5jWs49xEAnvjjsIT21eXG7AAAAAAAAAAAzt7+8vDtvP3XaTb2VMna+iLKHPLirhjwAAAAAAAAAAJM1Fr5MgI8+G6JZPgHSOr69W5M9cq4MvAAAAAAAAAAA4L9RPvaEYj3KEdc8skQ+vpeJJr2SBTG9AAAAAAAAAAAzzsw84frnNwDszTzPYi48NxMyuYaRQjoAAAAAAAAAAKbwy72sL6s/xkMFv+Chs77mJQW9c25QvgAAAAAAAAAAZqIyPOFClrr+LAE+tRcVvpXvATxD7e6+AAAAAAAAgD8G9LI+cTJBP/zfojtxh1++fd3ZPXdxkD0AAAAAAAAAANqCBT64PpA6DZzzuwI/0bnqTog8XFe5ugAAgD8AAIA/5k9KPWG8lD9zISQ9E92BvinUmj3cXpi9AAAAAAAAAABN+3U9PRATPvV7QL2ulhC+ewwPvHQFHT0AAAAAAAAAAJqnmT2sxIQ+T6EKPZQOCL7jr6A8b/2GPQAAAAAAAAAAMwnHvSXZgT/4tiy9VvQxvuKpv72IEnA9AAAAAAAAAADQYZo+CUpyPqKKO74jMq+9jRDdvEJmtLwAAAAAAAAAAKZqwT3rEK4/tEAqP0r8Yb4EGeA8Mjg8PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.007616000000000067, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQBQxQ2wbECUhpRSlIwBbJRNogGMAXSUR0B+RgXO4XoDdX2UKGgGaAloD0MI/zwNGKTrbUCUhpRSlGgVTYoBaBZHQH5IiUC7sfJ1fZQoaAZoCWgPQwgYPiKmxOZpQJSGlFKUaBVN5AFoFkdAfk3uv2Xb/XV9lChoBmgJaA9DCCxJnut7YG9AlIaUUpRoFU2bAWgWR0B+UJMWXTmXdX2UKGgGaAloD0MIcSGP4IaKcUCUhpRSlGgVTW8BaBZHQH5bd3bEgnt1fZQoaAZoCWgPQwhCJEOOrf1tQJSGlFKUaBVNvgFoFkdAfmDyhzvJBHV9lChoBmgJaA9DCKsGYW43H3BAlIaUUpRoFU25AWgWR0B+YaVyFPBSdX2UKGgGaAloD0MI4J7nTxs1GMCUhpRSlGgVTTYBaBZHQH5h/r8iwB51fZQoaAZoCWgPQwhj7e9sD19tQJSGlFKUaBVNqAFoFkdAfnqenQ6ZIHV9lChoBmgJaA9DCBNhw9OrO2xAlIaUUpRoFU2wAWgWR0B+f0hmoR7JdX2UKGgGaAloD0MIfuVBegqFbUCUhpRSlGgVTeYBaBZHQH6D3eBQN1B1fZQoaAZoCWgPQwhp44i1+IxsQJSGlFKUaBVNhwFoFkdAfoiCuU2UCHV9lChoBmgJaA9DCEGbHD5pj25AlIaUUpRoFU1uAWgWR0B+i/bdrO7hdX2UKGgGaAloD0MIqU9yh42ccECUhpRSlGgVTXABaBZHQH6WRo7FKkF1fZQoaAZoCWgPQwisUnqml95vQJSGlFKUaBVNAwJoFkdAfpl/J/5Ly3V9lChoBmgJaA9DCAU0ETa8CWtAlIaUUpRoFU38AWgWR0B+tdhkRSP2dX2UKGgGaAloD0MIpOL/jqjlb0CUhpRSlGgVTbYBaBZHQH63ugDifg91fZQoaAZoCWgPQwjmP6TfPpdvQJSGlFKUaBVNiQFoFkdAfrfvA44p+nV9lChoBmgJaA9DCM11Gmkp+m1AlIaUUpRoFU2eAWgWR0B+uOAZsKsudX2UKGgGaAloD0MI7yB2ptBlb0CUhpRSlGgVTYsBaBZHQH7JX2ZiNKh1fZQoaAZoCWgPQwj0/GmjOlFuQJSGlFKUaBVNtAFoFkdAfsqNg0CRwXV9lChoBmgJaA9DCEhRZ+4hymxAlIaUUpRoFU2bAWgWR0B+y/tJFspHdX2UKGgGaAloD0MIBTV8C6tvcUCUhpRSlGgVTbQBaBZHQH7PbgbZOBV1fZQoaAZoCWgPQwjzzMth98VuQJSGlFKUaBVNnQFoFkdAftNQkona4HV9lChoBmgJaA9DCHoYWp2c/WpAlIaUUpRoFU2oAWgWR0B+2aO2iL2pdX2UKGgGaAloD0MIzH9Iv73lcECUhpRSlGgVTXUBaBZHQH7ewZflZHN1fZQoaAZoCWgPQwjTTPc6qXtdQJSGlFKUaBVN6ANoFkdAfuAmR/3Fk3V9lChoBmgJaA9DCOohGt1BQGlAlIaUUpRoFU2iAWgWR0B+9NugpSaWdX2UKGgGaAloD0MIOgK4WTyTbUCUhpRSlGgVTRcCaBZHQH8DS8OCoTB1fZQoaAZoCWgPQwimnZrLjdhuQJSGlFKUaBVNhwFoFkdAfwtacqe9SXV9lChoBmgJaA9DCP2/6sjRJHBAlIaUUpRoFU3TAWgWR0B/C467ulXSdX2UKGgGaAloD0MIou4DkBoVcECUhpRSlGgVTX4BaBZHQH8Lmw3YL9d1fZQoaAZoCWgPQwjRzf5A+WRxQJSGlFKUaBVN8AFoFkdAfxNvkili0HV9lChoBmgJaA9DCB7EzhQ6r2lAlIaUUpRoFU22AWgWR0B/FQ3R5TqCdX2UKGgGaAloD0MIZr0YyglhbkCUhpRSlGgVTc0BaBZHQH8ZmmHgxah1fZQoaAZoCWgPQwg1lxsMdShxQJSGlFKUaBVNfQFoFkdAfxuu+RHPNXV9lChoBmgJaA9DCIP3VbmQaHBAlIaUUpRoFU2jAWgWR0B/NhPP9kz5dX2UKGgGaAloD0MIDmq/tRPRbUCUhpRSlGgVTY4BaBZHQH82G7e2uxN1fZQoaAZoCWgPQwj1EmOZ/ghxQJSGlFKUaBVNiQFoFkdAfzit6X0GvHV9lChoBmgJaA9DCMh9q3ViQ3BAlIaUUpRoFU3XAWgWR0B/PEWuX/o8dX2UKGgGaAloD0MIrYkFviIabECUhpRSlGgVTaYBaBZHQH9CgJHAh0R1fZQoaAZoCWgPQwjdXPxtDy9wQJSGlFKUaBVNfgFoFkdAf0R3VCojwHV9lChoBmgJaA9DCGIvFLCdhW9AlIaUUpRoFU2fAWgWR0B/RvxUedTYdX2UKGgGaAloD0MIUKkSZe85bECUhpRSlGgVTbIBaBZHQH9Ii704BFN1fZQoaAZoCWgPQwifknNiT9FwQJSGlFKUaBVNagFoFkdAf047xd6cAnV9lChoBmgJaA9DCH15AfbRETHAlIaUUpRoFU1EAWgWR0B/T0hLXcxkdX2UKGgGaAloD0MIqkVEMXk1a0CUhpRSlGgVTVQBaBZHQH9rQCGN70F1fZQoaAZoCWgPQwjP29jsyDZsQJSGlFKUaBVNkQFoFkdAf22yad+Xq3V9lChoBmgJaA9DCDgR/dp602xAlIaUUpRoFU2UAWgWR0B/bhV5rxiHdX2UKGgGaAloD0MIXRq/8EqSbECUhpRSlGgVTYcBaBZHQH91WsNlRP51fZQoaAZoCWgPQwgmGTkL+zFtQJSGlFKUaBVNeQFoFkdAf3faFVT723V9lChoBmgJaA9DCCgNNQrJNm5AlIaUUpRoFU16AWgWR0B/ehYNiH6/dX2UKGgGaAloD0MIsIwN3Ww8bUCUhpRSlGgVTW4BaBZHQH+AUDhcZ+B1fZQoaAZoCWgPQwhQptHkYkBvQJSGlFKUaBVNdQFoFkdAf4Fb/wRXfnV9lChoBmgJaA9DCOmBj8GKNGxAlIaUUpRoFU1xAWgWR0B/h03rD63zdX2UKGgGaAloD0MIu9bepypzb0CUhpRSlGgVTVUBaBZHQH+JJL26ClJ1fZQoaAZoCWgPQwicGJKTCdpsQJSGlFKUaBVNnQFoFkdAf4ncE/0NBnV9lChoBmgJaA9DCH2SO2yiG2pAlIaUUpRoFU13AWgWR0B/j24oZydXdX2UKGgGaAloD0MI9SudD0+Ab0CUhpRSlGgVTYsBaBZHQH+oQmReTmp1fZQoaAZoCWgPQwj/0MyTq3pwQJSGlFKUaBVNgwFoFkdAf6zHB1s+FHV9lChoBmgJaA9DCIBkOnR6j29AlIaUUpRoFU26AWgWR0B/rZTgl4TsdX2UKGgGaAloD0MIpDmy8kvZbUCUhpRSlGgVTbMBaBZHQH+1mFJxvNx1fZQoaAZoCWgPQwhNS6yMRkJwQJSGlFKUaBVNfwFoFkdAf7onL7oB73V9lChoBmgJaA9DCIeIm1OJuXBAlIaUUpRoFU2TAWgWR0B/us0Nz8xcdX2UKGgGaAloD0MIToBh+XNNa0CUhpRSlGgVTXYBaBZHQH/B64c3l0Z1fZQoaAZoCWgPQwgVH5+QHe5wQJSGlFKUaBVNkwFoFkdAf8k/bTMJQnV9lChoBmgJaA9DCPIGmPmOFW9AlIaUUpRoFU2AAWgWR0B/4EplSS/1dX2UKGgGaAloD0MIhe6SOCsmakCUhpRSlGgVTc4BaBZHQH/ge2qkuYh1fZQoaAZoCWgPQwgukQvOYLNsQJSGlFKUaBVNiwFoFkdAf+D2Xsw+MnV9lChoBmgJaA9DCCbICKiwF3BAlIaUUpRoFU0dAmgWR0B/5SG1x82KdX2UKGgGaAloD0MIgEV+/RA9akCUhpRSlGgVTWkBaBZHQH/leLehwl11fZQoaAZoCWgPQwjBdFq3wZJwQJSGlFKUaBVNRgFoFkdAf+aOiFj/dnV9lChoBmgJaA9DCB9N9WT+t2tAlIaUUpRoFU2FAWgWR0B/6K56MR6GdX2UKGgGaAloD0MIaauSyD6rbUCUhpRSlGgVTaMBaBZHQH/qu0Xxe9l1fZQoaAZoCWgPQwheZ0P+2cFwQJSGlFKUaBVNbQFoFkdAf/Zd7fHgg3V9lChoBmgJaA9DCKhtwyiIknBAlIaUUpRoFU2YAWgWR0B/92nqFAVxdX2UKGgGaAloD0MIYD5ZMVxWcECUhpRSlGgVTXsBaBZHQH/3sa86FM91fZQoaAZoCWgPQwgix9YzBERvQJSGlFKUaBVNZAFoFkdAf/xgqEvkBHV9lChoBmgJaA9DCOlfksoUc/0/lIaUUpRoFU1qAWgWR0CAChUzbeuWdX2UKGgGaAloD0MIGSDRBIo/a0CUhpRSlGgVTXwBaBZHQIALMMI/qxF1fZQoaAZoCWgPQwizYU1l0d1uQJSGlFKUaBVNbAFoFkdAgA4hQemvXHV9lChoBmgJaA9DCMLc7uU+7T5AlIaUUpRoFU0xAWgWR0CAEgV+qioLdX2UKGgGaAloD0MIKo2Y2efJbkCUhpRSlGgVTV8BaBZHQIATYydnTRZ1fZQoaAZoCWgPQwi5GW7A565vQJSGlFKUaBVNiwFoFkdAgBSwyIpH7XV9lChoBmgJaA9DCB6M2CcA5GlAlIaUUpRoFU15AWgWR0CAFeApazNVdX2UKGgGaAloD0MIwCUA/xRMb0CUhpRSlGgVTYwBaBZHQIAXG1F6Rhd1fZQoaAZoCWgPQwjkEHFzqjBvQJSGlFKUaBVNWwFoFkdAgBfG5tm+TXV9lChoBmgJaA9DCKmgoupXT25AlIaUUpRoFU1zAWgWR0CAF9ssQNCrdX2UKGgGaAloD0MIRu7p6s4rcECUhpRSlGgVTXkBaBZHQIAavuLJjlR1fZQoaAZoCWgPQwizDHGsi8JvQJSGlFKUaBVNtQFoFkdAgBynH3lCC3V9lChoBmgJaA9DCCZw626eMXBAlIaUUpRoFU1UAWgWR0CAKEbnX/YKdX2UKGgGaAloD0MIp658ludcbECUhpRSlGgVTV0BaBZHQIAoS8xsVL11fZQoaAZoCWgPQwhU/yCSIX8vQJSGlFKUaBVNOAFoFkdAgCiPf8/D+HV9lChoBmgJaA9DCLggW5YvwXBAlIaUUpRoFU11AWgWR0CAL6sEJSiudX2UKGgGaAloD0MIQgWHF0T2bUCUhpRSlGgVTW8BaBZHQIAwXQyAQQN1fZQoaAZoCWgPQwg4LA386PZxQJSGlFKUaBVN5QFoFkdAgDMjTa0x/XV9lChoBmgJaA9DCDpBmxy+OWxAlIaUUpRoFU2RAWgWR0CANnnjhky2dX2UKGgGaAloD0MIIa6cvbOcbkCUhpRSlGgVTVcBaBZHQIA5l/Yrauh1fZQoaAZoCWgPQwhZFkz80ZBtQJSGlFKUaBVNhAFoFkdAgDnI2wV0tHV9lChoBmgJaA9DCBGpaRfTYG1AlIaUUpRoFU15AWgWR0CAOhbnoxHodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 492, "n_steps": 256, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07889a2a7cfedcb11e63590e04b84285cd0f7ab2fd6c80b7fac30b494f243639
|
3 |
+
size 144047
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f70214bbb90>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f70214bbc20>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f70214bbcb0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f70214bbd40>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f70214bbdd0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f70214bbe60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f70214bbef0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f70214bbf80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f70214c0050>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f70214c00e0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f70214c0170>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f7021500de0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 503808,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652741797.2050438,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAABpHx73uX58/DokNvwqqFb/tJbi8NF1KvgAAAAAAAAAAwGjava6XpT5jWs49xEAnvjjsIT21eXG7AAAAAAAAAAAzt7+8vDtvP3XaTb2VMna+iLKHPLirhjwAAAAAAAAAAJM1Fr5MgI8+G6JZPgHSOr69W5M9cq4MvAAAAAAAAAAA4L9RPvaEYj3KEdc8skQ+vpeJJr2SBTG9AAAAAAAAAAAzzsw84frnNwDszTzPYi48NxMyuYaRQjoAAAAAAAAAAKbwy72sL6s/xkMFv+Chs77mJQW9c25QvgAAAAAAAAAAZqIyPOFClrr+LAE+tRcVvpXvATxD7e6+AAAAAAAAgD8G9LI+cTJBP/zfojtxh1++fd3ZPXdxkD0AAAAAAAAAANqCBT64PpA6DZzzuwI/0bnqTog8XFe5ugAAgD8AAIA/5k9KPWG8lD9zISQ9E92BvinUmj3cXpi9AAAAAAAAAABN+3U9PRATPvV7QL2ulhC+ewwPvHQFHT0AAAAAAAAAAJqnmT2sxIQ+T6EKPZQOCL7jr6A8b/2GPQAAAAAAAAAAMwnHvSXZgT/4tiy9VvQxvuKpv72IEnA9AAAAAAAAAADQYZo+CUpyPqKKO74jMq+9jRDdvEJmtLwAAAAAAAAAAKZqwT3rEK4/tEAqP0r8Yb4EGeA8Mjg8PgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.007616000000000067,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIyQBQxQ2wbECUhpRSlIwBbJRNogGMAXSUR0B+RgXO4XoDdX2UKGgGaAloD0MI/zwNGKTrbUCUhpRSlGgVTYoBaBZHQH5IiUC7sfJ1fZQoaAZoCWgPQwgYPiKmxOZpQJSGlFKUaBVN5AFoFkdAfk3uv2Xb/XV9lChoBmgJaA9DCCxJnut7YG9AlIaUUpRoFU2bAWgWR0B+UJMWXTmXdX2UKGgGaAloD0MIcSGP4IaKcUCUhpRSlGgVTW8BaBZHQH5bd3bEgnt1fZQoaAZoCWgPQwhCJEOOrf1tQJSGlFKUaBVNvgFoFkdAfmDyhzvJBHV9lChoBmgJaA9DCKsGYW43H3BAlIaUUpRoFU25AWgWR0B+YaVyFPBSdX2UKGgGaAloD0MI4J7nTxs1GMCUhpRSlGgVTTYBaBZHQH5h/r8iwB51fZQoaAZoCWgPQwhj7e9sD19tQJSGlFKUaBVNqAFoFkdAfnqenQ6ZIHV9lChoBmgJaA9DCBNhw9OrO2xAlIaUUpRoFU2wAWgWR0B+f0hmoR7JdX2UKGgGaAloD0MIfuVBegqFbUCUhpRSlGgVTeYBaBZHQH6D3eBQN1B1fZQoaAZoCWgPQwhp44i1+IxsQJSGlFKUaBVNhwFoFkdAfoiCuU2UCHV9lChoBmgJaA9DCEGbHD5pj25AlIaUUpRoFU1uAWgWR0B+i/bdrO7hdX2UKGgGaAloD0MIqU9yh42ccECUhpRSlGgVTXABaBZHQH6WRo7FKkF1fZQoaAZoCWgPQwisUnqml95vQJSGlFKUaBVNAwJoFkdAfpl/J/5Ly3V9lChoBmgJaA9DCAU0ETa8CWtAlIaUUpRoFU38AWgWR0B+tdhkRSP2dX2UKGgGaAloD0MIpOL/jqjlb0CUhpRSlGgVTbYBaBZHQH63ugDifg91fZQoaAZoCWgPQwjmP6TfPpdvQJSGlFKUaBVNiQFoFkdAfrfvA44p+nV9lChoBmgJaA9DCM11Gmkp+m1AlIaUUpRoFU2eAWgWR0B+uOAZsKsudX2UKGgGaAloD0MI7yB2ptBlb0CUhpRSlGgVTYsBaBZHQH7JX2ZiNKh1fZQoaAZoCWgPQwj0/GmjOlFuQJSGlFKUaBVNtAFoFkdAfsqNg0CRwXV9lChoBmgJaA9DCEhRZ+4hymxAlIaUUpRoFU2bAWgWR0B+y/tJFspHdX2UKGgGaAloD0MIBTV8C6tvcUCUhpRSlGgVTbQBaBZHQH7PbgbZOBV1fZQoaAZoCWgPQwjzzMth98VuQJSGlFKUaBVNnQFoFkdAftNQkona4HV9lChoBmgJaA9DCHoYWp2c/WpAlIaUUpRoFU2oAWgWR0B+2aO2iL2pdX2UKGgGaAloD0MIzH9Iv73lcECUhpRSlGgVTXUBaBZHQH7ewZflZHN1fZQoaAZoCWgPQwjTTPc6qXtdQJSGlFKUaBVN6ANoFkdAfuAmR/3Fk3V9lChoBmgJaA9DCOohGt1BQGlAlIaUUpRoFU2iAWgWR0B+9NugpSaWdX2UKGgGaAloD0MIOgK4WTyTbUCUhpRSlGgVTRcCaBZHQH8DS8OCoTB1fZQoaAZoCWgPQwimnZrLjdhuQJSGlFKUaBVNhwFoFkdAfwtacqe9SXV9lChoBmgJaA9DCP2/6sjRJHBAlIaUUpRoFU3TAWgWR0B/C467ulXSdX2UKGgGaAloD0MIou4DkBoVcECUhpRSlGgVTX4BaBZHQH8Lmw3YL9d1fZQoaAZoCWgPQwjRzf5A+WRxQJSGlFKUaBVN8AFoFkdAfxNvkili0HV9lChoBmgJaA9DCB7EzhQ6r2lAlIaUUpRoFU22AWgWR0B/FQ3R5TqCdX2UKGgGaAloD0MIZr0YyglhbkCUhpRSlGgVTc0BaBZHQH8ZmmHgxah1fZQoaAZoCWgPQwg1lxsMdShxQJSGlFKUaBVNfQFoFkdAfxuu+RHPNXV9lChoBmgJaA9DCIP3VbmQaHBAlIaUUpRoFU2jAWgWR0B/NhPP9kz5dX2UKGgGaAloD0MIDmq/tRPRbUCUhpRSlGgVTY4BaBZHQH82G7e2uxN1fZQoaAZoCWgPQwj1EmOZ/ghxQJSGlFKUaBVNiQFoFkdAfzit6X0GvHV9lChoBmgJaA9DCMh9q3ViQ3BAlIaUUpRoFU3XAWgWR0B/PEWuX/o8dX2UKGgGaAloD0MIrYkFviIabECUhpRSlGgVTaYBaBZHQH9CgJHAh0R1fZQoaAZoCWgPQwjdXPxtDy9wQJSGlFKUaBVNfgFoFkdAf0R3VCojwHV9lChoBmgJaA9DCGIvFLCdhW9AlIaUUpRoFU2fAWgWR0B/RvxUedTYdX2UKGgGaAloD0MIUKkSZe85bECUhpRSlGgVTbIBaBZHQH9Ii704BFN1fZQoaAZoCWgPQwifknNiT9FwQJSGlFKUaBVNagFoFkdAf047xd6cAnV9lChoBmgJaA9DCH15AfbRETHAlIaUUpRoFU1EAWgWR0B/T0hLXcxkdX2UKGgGaAloD0MIqkVEMXk1a0CUhpRSlGgVTVQBaBZHQH9rQCGN70F1fZQoaAZoCWgPQwjP29jsyDZsQJSGlFKUaBVNkQFoFkdAf22yad+Xq3V9lChoBmgJaA9DCDgR/dp602xAlIaUUpRoFU2UAWgWR0B/bhV5rxiHdX2UKGgGaAloD0MIXRq/8EqSbECUhpRSlGgVTYcBaBZHQH91WsNlRP51fZQoaAZoCWgPQwgmGTkL+zFtQJSGlFKUaBVNeQFoFkdAf3faFVT723V9lChoBmgJaA9DCCgNNQrJNm5AlIaUUpRoFU16AWgWR0B/ehYNiH6/dX2UKGgGaAloD0MIsIwN3Ww8bUCUhpRSlGgVTW4BaBZHQH+AUDhcZ+B1fZQoaAZoCWgPQwhQptHkYkBvQJSGlFKUaBVNdQFoFkdAf4Fb/wRXfnV9lChoBmgJaA9DCOmBj8GKNGxAlIaUUpRoFU1xAWgWR0B/h03rD63zdX2UKGgGaAloD0MIu9bepypzb0CUhpRSlGgVTVUBaBZHQH+JJL26ClJ1fZQoaAZoCWgPQwicGJKTCdpsQJSGlFKUaBVNnQFoFkdAf4ncE/0NBnV9lChoBmgJaA9DCH2SO2yiG2pAlIaUUpRoFU13AWgWR0B/j24oZydXdX2UKGgGaAloD0MI9SudD0+Ab0CUhpRSlGgVTYsBaBZHQH+oQmReTmp1fZQoaAZoCWgPQwj/0MyTq3pwQJSGlFKUaBVNgwFoFkdAf6zHB1s+FHV9lChoBmgJaA9DCIBkOnR6j29AlIaUUpRoFU26AWgWR0B/rZTgl4TsdX2UKGgGaAloD0MIpDmy8kvZbUCUhpRSlGgVTbMBaBZHQH+1mFJxvNx1fZQoaAZoCWgPQwhNS6yMRkJwQJSGlFKUaBVNfwFoFkdAf7onL7oB73V9lChoBmgJaA9DCIeIm1OJuXBAlIaUUpRoFU2TAWgWR0B/us0Nz8xcdX2UKGgGaAloD0MIToBh+XNNa0CUhpRSlGgVTXYBaBZHQH/B64c3l0Z1fZQoaAZoCWgPQwgVH5+QHe5wQJSGlFKUaBVNkwFoFkdAf8k/bTMJQnV9lChoBmgJaA9DCPIGmPmOFW9AlIaUUpRoFU2AAWgWR0B/4EplSS/1dX2UKGgGaAloD0MIhe6SOCsmakCUhpRSlGgVTc4BaBZHQH/ge2qkuYh1fZQoaAZoCWgPQwgukQvOYLNsQJSGlFKUaBVNiwFoFkdAf+D2Xsw+MnV9lChoBmgJaA9DCCbICKiwF3BAlIaUUpRoFU0dAmgWR0B/5SG1x82KdX2UKGgGaAloD0MIgEV+/RA9akCUhpRSlGgVTWkBaBZHQH/leLehwl11fZQoaAZoCWgPQwjBdFq3wZJwQJSGlFKUaBVNRgFoFkdAf+aOiFj/dnV9lChoBmgJaA9DCB9N9WT+t2tAlIaUUpRoFU2FAWgWR0B/6K56MR6GdX2UKGgGaAloD0MIaauSyD6rbUCUhpRSlGgVTaMBaBZHQH/qu0Xxe9l1fZQoaAZoCWgPQwheZ0P+2cFwQJSGlFKUaBVNbQFoFkdAf/Zd7fHgg3V9lChoBmgJaA9DCKhtwyiIknBAlIaUUpRoFU2YAWgWR0B/92nqFAVxdX2UKGgGaAloD0MIYD5ZMVxWcECUhpRSlGgVTXsBaBZHQH/3sa86FM91fZQoaAZoCWgPQwgix9YzBERvQJSGlFKUaBVNZAFoFkdAf/xgqEvkBHV9lChoBmgJaA9DCOlfksoUc/0/lIaUUpRoFU1qAWgWR0CAChUzbeuWdX2UKGgGaAloD0MIGSDRBIo/a0CUhpRSlGgVTXwBaBZHQIALMMI/qxF1fZQoaAZoCWgPQwizYU1l0d1uQJSGlFKUaBVNbAFoFkdAgA4hQemvXHV9lChoBmgJaA9DCMLc7uU+7T5AlIaUUpRoFU0xAWgWR0CAEgV+qioLdX2UKGgGaAloD0MIKo2Y2efJbkCUhpRSlGgVTV8BaBZHQIATYydnTRZ1fZQoaAZoCWgPQwi5GW7A565vQJSGlFKUaBVNiwFoFkdAgBSwyIpH7XV9lChoBmgJaA9DCB6M2CcA5GlAlIaUUpRoFU15AWgWR0CAFeApazNVdX2UKGgGaAloD0MIwCUA/xRMb0CUhpRSlGgVTYwBaBZHQIAXG1F6Rhd1fZQoaAZoCWgPQwjkEHFzqjBvQJSGlFKUaBVNWwFoFkdAgBfG5tm+TXV9lChoBmgJaA9DCKmgoupXT25AlIaUUpRoFU1zAWgWR0CAF9ssQNCrdX2UKGgGaAloD0MIRu7p6s4rcECUhpRSlGgVTXkBaBZHQIAavuLJjlR1fZQoaAZoCWgPQwizDHGsi8JvQJSGlFKUaBVNtQFoFkdAgBynH3lCC3V9lChoBmgJaA9DCCZw626eMXBAlIaUUpRoFU1UAWgWR0CAKEbnX/YKdX2UKGgGaAloD0MIp658ludcbECUhpRSlGgVTV0BaBZHQIAoS8xsVL11fZQoaAZoCWgPQwhU/yCSIX8vQJSGlFKUaBVNOAFoFkdAgCiPf8/D+HV9lChoBmgJaA9DCLggW5YvwXBAlIaUUpRoFU11AWgWR0CAL6sEJSiudX2UKGgGaAloD0MIQgWHF0T2bUCUhpRSlGgVTW8BaBZHQIAwXQyAQQN1fZQoaAZoCWgPQwg4LA386PZxQJSGlFKUaBVN5QFoFkdAgDMjTa0x/XV9lChoBmgJaA9DCDpBmxy+OWxAlIaUUpRoFU2RAWgWR0CANnnjhky2dX2UKGgGaAloD0MIIa6cvbOcbkCUhpRSlGgVTVcBaBZHQIA5l/Yrauh1fZQoaAZoCWgPQwhZFkz80ZBtQJSGlFKUaBVNhAFoFkdAgDnI2wV0tHV9lChoBmgJaA9DCBGpaRfTYG1AlIaUUpRoFU15AWgWR0CAOhbnoxHodWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 492,
|
79 |
+
"n_steps": 256,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0f25944cac958293f4724eb06ea29e668c6df626098822595e8e3f989100403c
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01b44a56386977fa65d42ed21cad0f339a1ebb1b53869abee34f1dc66737389c
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:142ed1e3a6a643bdbd806b75f9c152b0c0cb5b2cd087e513779ef919ef0098c5
|
3 |
+
size 235545
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 198.09203960821685, "std_reward": 20.232212822532542, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-16T23:07:58.041442"}
|