File size: 2,097 Bytes
75f0f79 eeb1213 75f0f79 eeb1213 75f0f79 eeb1213 75f0f79 eeb1213 75f0f79 eeb1213 75f0f79 eeb1213 75f0f79 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
library_name: transformers
license: apache-2.0
base_model: CocoRoF/KoModernBERT-chp-04
tags:
- generated_from_trainer
model-index:
- name: KoModernBERT-chp-05
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# KoModernBERT-chp-05
This model is a fine-tuned version of [CocoRoF/KoModernBERT-chp-04](https://huggingface.co/CocoRoF/KoModernBERT-chp-04) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.0829
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 8
- total_train_batch_size: 512
- total_eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 1.0
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:------:|:-----:|:---------------:|
| 17.9483 | 0.0904 | 5000 | 2.1860 |
| 17.4604 | 0.1808 | 10000 | 2.1737 |
| 17.2613 | 0.2712 | 15000 | 2.1614 |
| 17.3945 | 0.3616 | 20000 | 2.1502 |
| 16.9544 | 0.4520 | 25000 | 2.1386 |
| 16.8142 | 0.5424 | 30000 | 2.1271 |
| 16.7899 | 0.6329 | 35000 | 2.1153 |
| 16.9125 | 0.7233 | 40000 | 2.1080 |
| 16.954 | 0.8137 | 45000 | 2.1012 |
| 16.6773 | 0.9041 | 50000 | 2.0931 |
| 16.8028 | 0.9945 | 55000 | 2.0829 |
### Framework versions
- Transformers 4.48.1
- Pytorch 2.5.1+cu124
- Datasets 3.2.0
- Tokenizers 0.21.0
|