Update README.md
Browse files
README.md
CHANGED
|
@@ -8,192 +8,183 @@ tags: []
|
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
[
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
| 171 |
-
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
[More Information Needed]
|
| 192 |
-
|
| 193 |
-
## Model Card Authors [optional]
|
| 194 |
-
|
| 195 |
-
[More Information Needed]
|
| 196 |
-
|
| 197 |
-
## Model Card Contact
|
| 198 |
-
|
| 199 |
-
[More Information Needed]
|
|
|
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
| 10 |
|
| 11 |
+
```python
|
| 12 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 13 |
+
import torch
|
| 14 |
+
from typing import List, Optional
|
| 15 |
+
import numpy as np
|
| 16 |
+
from datetime import datetime
|
| 17 |
+
|
| 18 |
+
class TextStreamer:
|
| 19 |
+
def __init__(self, tokenizer, output_file=None):
|
| 20 |
+
self.tokenizer = tokenizer
|
| 21 |
+
self.current_tokens = []
|
| 22 |
+
self.output_file = output_file
|
| 23 |
+
self.full_response = ""
|
| 24 |
+
|
| 25 |
+
def put(self, value):
|
| 26 |
+
if isinstance(value, torch.Tensor):
|
| 27 |
+
value = value.cpu().numpy()
|
| 28 |
+
if len(value.shape) > 1:
|
| 29 |
+
value = value[0]
|
| 30 |
+
|
| 31 |
+
if isinstance(value, np.ndarray):
|
| 32 |
+
value = value.tolist()
|
| 33 |
+
|
| 34 |
+
if isinstance(value, list):
|
| 35 |
+
if isinstance(value[0], list):
|
| 36 |
+
value = value[0]
|
| 37 |
+
self.current_tokens.extend(value)
|
| 38 |
+
else:
|
| 39 |
+
self.current_tokens.append(value)
|
| 40 |
+
|
| 41 |
+
tokens_to_decode = [int(token) for token in self.current_tokens]
|
| 42 |
+
text = self.tokenizer.decode(tokens_to_decode, skip_special_tokens=True)
|
| 43 |
+
|
| 44 |
+
if len(self.current_tokens) > len(value):
|
| 45 |
+
previous_text = self.tokenizer.decode(
|
| 46 |
+
[int(token) for token in self.current_tokens[:-len(value) if isinstance(value, list) else -1]],
|
| 47 |
+
skip_special_tokens=True
|
| 48 |
+
)
|
| 49 |
+
new_text = text[len(previous_text):]
|
| 50 |
+
else:
|
| 51 |
+
new_text = text
|
| 52 |
+
|
| 53 |
+
if new_text:
|
| 54 |
+
print(new_text, end="", flush=True)
|
| 55 |
+
self.full_response += new_text
|
| 56 |
+
|
| 57 |
+
def end(self):
|
| 58 |
+
print("")
|
| 59 |
+
if self.output_file:
|
| 60 |
+
with open(self.output_file, 'a', encoding='utf-8') as f:
|
| 61 |
+
f.write(f"\n--- Response generated at {datetime.now().strftime('%Y-%m-%d %H:%M:%S')} ---\n")
|
| 62 |
+
f.write(self.full_response)
|
| 63 |
+
f.write("\n\n")
|
| 64 |
+
return self.full_response
|
| 65 |
+
|
| 66 |
+
class Translator:
|
| 67 |
+
DEFAULT_SYSTEM_PROMPT = """
|
| 68 |
+
You are a skilled linguistic expert specializing in cross-lingual translation. Your task is to perform accurate and detailed translations, moving from a given source language to a specified destination language.
|
| 69 |
+
You will perform the translation by thinking and reasoning step-by-step by and demonstrating the linguistic transformation process while maintaining the source context.
|
| 70 |
+
|
| 71 |
+
# Output Format
|
| 72 |
+
|
| 73 |
+
Your translation responses should be structured as follows:
|
| 74 |
+
|
| 75 |
+
```
|
| 76 |
+
<think>
|
| 77 |
+
[Detailed thinking and reasoning process, including the analysis and breakdown of the sentence]
|
| 78 |
+
</think>
|
| 79 |
+
<translation>
|
| 80 |
+
[Final translated sentence based on the step-by-step reasoning]
|
| 81 |
+
</translation>
|
| 82 |
+
```
|
| 83 |
+
|
| 84 |
+
Stick to the above formate and exclose the final translation in <translation>{translated sentence}</translation>
|
| 85 |
+
"""
|
| 86 |
+
|
| 87 |
+
def __init__(
|
| 88 |
+
self,
|
| 89 |
+
model_name: str,
|
| 90 |
+
system_prompt: Optional[str] = None,
|
| 91 |
+
device_map: str = "auto",
|
| 92 |
+
torch_dtype: str = "auto"
|
| 93 |
+
):
|
| 94 |
+
"""
|
| 95 |
+
Initialize the translator with a model and tokenizer.
|
| 96 |
+
|
| 97 |
+
Args:
|
| 98 |
+
model_name: Path or name of the model to load
|
| 99 |
+
system_prompt: Optional custom system prompt
|
| 100 |
+
device_map: Device mapping strategy for model loading
|
| 101 |
+
torch_dtype: Torch data type for model
|
| 102 |
+
"""
|
| 103 |
+
self.model = AutoModelForCausalLM.from_pretrained(
|
| 104 |
+
model_name,
|
| 105 |
+
torch_dtype=torch_dtype,
|
| 106 |
+
device_map=device_map
|
| 107 |
+
)
|
| 108 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 109 |
+
self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT
|
| 110 |
+
|
| 111 |
+
def translate(
|
| 112 |
+
self,
|
| 113 |
+
text: str,
|
| 114 |
+
max_new_tokens: int = 2048,
|
| 115 |
+
temperature: float = 0.1,
|
| 116 |
+
top_p: float = 0.7,
|
| 117 |
+
output_file: Optional[str] = None
|
| 118 |
+
) -> str:
|
| 119 |
+
"""
|
| 120 |
+
Translate the given text using the loaded model.
|
| 121 |
+
|
| 122 |
+
Args:
|
| 123 |
+
text: Text to translate
|
| 124 |
+
max_new_tokens: Maximum number of tokens to generate
|
| 125 |
+
temperature: Temperature for generation
|
| 126 |
+
top_p: Top-p sampling parameter
|
| 127 |
+
output_file: Optional file to save the translation
|
| 128 |
+
|
| 129 |
+
Returns:
|
| 130 |
+
str: The translated text
|
| 131 |
+
"""
|
| 132 |
+
# Prepare messages
|
| 133 |
+
messages = [
|
| 134 |
+
{"role": "system", "content": self.system_prompt},
|
| 135 |
+
{"role": "user", "content": text}
|
| 136 |
+
]
|
| 137 |
+
|
| 138 |
+
# Apply chat template
|
| 139 |
+
prompt = self.tokenizer.apply_chat_template(
|
| 140 |
+
messages,
|
| 141 |
+
tokenize=False,
|
| 142 |
+
add_generation_prompt=True
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
# Tokenize input
|
| 146 |
+
model_inputs = self.tokenizer([prompt], return_tensors="pt").to(self.model.device)
|
| 147 |
+
|
| 148 |
+
# Create streamer
|
| 149 |
+
streamer = TextStreamer(self.tokenizer, output_file=output_file)
|
| 150 |
+
|
| 151 |
+
# Generate with streaming
|
| 152 |
+
self.model.generate(
|
| 153 |
+
**model_inputs,
|
| 154 |
+
max_new_tokens=max_new_tokens,
|
| 155 |
+
temperature=temperature,
|
| 156 |
+
top_p=top_p,
|
| 157 |
+
streamer=streamer
|
| 158 |
+
)
|
| 159 |
+
|
| 160 |
+
return streamer.end()
|
| 161 |
+
|
| 162 |
+
def __call__(self, *args, **kwargs) -> str:
|
| 163 |
+
"""
|
| 164 |
+
Make the translator callable directly.
|
| 165 |
+
"""
|
| 166 |
+
return self.translate(*args, **kwargs)
|
| 167 |
+
|
| 168 |
+
# %%
|
| 169 |
+
translator = Translator(
|
| 170 |
+
model_name="CoT-Translator/Llama-3b-Reasoning-Translate"
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
# %%
|
| 174 |
+
# Use it multiple times
|
| 175 |
+
texts = [
|
| 176 |
+
# "संक्रमित चमगादड़ निपाह विषाणु को सूअरों जैसे अन्य जानवरों में भी फैला सकते हैं। .translate from hindi to english",
|
| 177 |
+
"how are you doing today and what is your name .translate from english to hindi",
|
| 178 |
+
# "सफरचंदसाठी आजचा दिवस खरोखर चांगला आहे आणि मला खूप मजा येत आहे. translate from marathi to english"
|
| 179 |
+
# "Today's day is really good for Safar Chand and I'm having a lot of fun. translate from english to marathi"
|
| 180 |
+
]
|
| 181 |
+
|
| 182 |
+
for text in texts:
|
| 183 |
+
print(f"\nTranslating: {text}")
|
| 184 |
+
translation = translator(
|
| 185 |
+
text,
|
| 186 |
+
output_file="translation_responses_llama_translate.txt"
|
| 187 |
+
)
|
| 188 |
+
print(f"Complete translation: {translation}\n")
|
| 189 |
+
|
| 190 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|