unit_1_exp_1
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo_train_1.zip +3 -0
- ppo_train_1/_stable_baselines3_version +1 -0
- ppo_train_1/data +94 -0
- ppo_train_1/policy.optimizer.pth +3 -0
- ppo_train_1/policy.pth +3 -0
- ppo_train_1/pytorch_variables.pth +3 -0
- ppo_train_1/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 203.88 +/- 20.92
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3842fd830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3842fd8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3842fd950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3842fd9e0>", "_build": "<function ActorCriticPolicy._build at 0x7fe3842fda70>", "forward": "<function ActorCriticPolicy.forward at 0x7fe3842fdb00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3842fdb90>", "_predict": "<function ActorCriticPolicy._predict at 0x7fe3842fdc20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3842fdcb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3842fdd40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3842fddd0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fe3842d6090>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652087288.396448, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCUlr32TCy6/b1uO4NG2DaHr005dsTBNQAAgD8AAIA/ACyLPPYkErqY3Wy7BWStN37G47rqECs6AACAPwAAgD9NQVY+jiG9PuepjL5RkJ++1hsYvEOIuL0AAAAAAAAAADNn1bwp5Fy66kqKOa+1CjWW6jY7kLyfuAAAgD8AAIA/c06jPez5gLnnYzS5FyuPtF7c7jkodlU4AACAPwAAgD8ghAs+e7j5uqYJl7sLeJM4S7aDu4qUfDoAAIA/AACAP3PEjD3XQzK5ilOivGXXOrlC7Oq6YrEGPQAAAAAAAAAAmu/xPK6Vk7peQ8G7yzoss4yWUzqu70IzAACAPwAAgD8NZ4899hRtuhV9Cbx2WJw17hQmOmiyD7UAAIA/AACAP/Os2j1cX0y640LiOqI4irXR0aS7NBoEugAAgD8AAIA/5hNIPWzyijzheiM+LBJQvRW41j0525q9AAAAAAAAAADN9iW8jw4+uvL9qjqJNnI1NOYeuqjxwLkAAIA/AACAPzP0zTwUKIK6QjGSumKcgLQ8Uru6TdylOQAAgD8AAIA/M5MHvnbqND328sQ+BroJvu4ULj2a0Jg8AAAAAAAAAADNnrI8cESvP/rKST16XN6+Z1QKPnP7lz0AAAAAAAAAADMygzzD5RI5DvbAOYYlqjUQiTe6gnDmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOzQsRl3jWUCUhpRSlIwBbJRN6AOMAXSUR0B/AUwDeTFEdX2UKGgGaAloD0MIKxTpfk4pYkCUhpRSlGgVTegDaBZHQH8Q1Oj7AL11fZQoaAZoCWgPQwjxftx++VteQJSGlFKUaBVN6ANoFkdAfx5bAk9lmXV9lChoBmgJaA9DCA9CQL4EhGZAlIaUUpRoFU1XA2gWR0B/ONGLDQ7cdX2UKGgGaAloD0MI5UF6ihzeO0CUhpRSlGgVS/xoFkdAf1r7sOXmeXV9lChoBmgJaA9DCL3l6scmTlRAlIaUUpRoFU3oA2gWR0B/XN0T101ZdX2UKGgGaAloD0MIzbBR1m9eWECUhpRSlGgVTegDaBZHQH9dUjX4CZF1fZQoaAZoCWgPQwiVKlH2li5fQJSGlFKUaBVN6ANoFkdAf2CzTF2mpHV9lChoBmgJaA9DCLXAHhMppSFAlIaUUpRoFUvcaBZHQH+fvfTCtRx1fZQoaAZoCWgPQwhWLekoB/diQJSGlFKUaBVN6ANoFkdAf67Rm9QGfXV9lChoBmgJaA9DCMFwrmGGvlxAlIaUUpRoFU3oA2gWR0B/scSPEKmbdX2UKGgGaAloD0MIchqiCn/HYUCUhpRSlGgVTegDaBZHQH/AG5hBqsV1fZQoaAZoCWgPQwhjDRe5p5JcQJSGlFKUaBVN6ANoFkdAf85HsTnJT3V9lChoBmgJaA9DCGba/pWVCGNAlIaUUpRoFU3oA2gWR0CAK6n0Cih4dX2UKGgGaAloD0MI6znpfWNaZECUhpRSlGgVTegDaBZHQIAtZ11W8yx1fZQoaAZoCWgPQwjxDYXP1sH1v5SGlFKUaBVNBAFoFkdAgC9HHNorWnV9lChoBmgJaA9DCOWYLO4/fV1AlIaUUpRoFU3oA2gWR0CAMCpI+W4WdX2UKGgGaAloD0MIB7Ezhc4dYECUhpRSlGgVTegDaBZHQIA2aKiwjdJ1fZQoaAZoCWgPQwiC5nPudi9cQJSGlFKUaBVN6ANoFkdAgErvjGT9sXV9lChoBmgJaA9DCFjjbDqCZWFAlIaUUpRoFU3oA2gWR0CATYdT5wfhdX2UKGgGaAloD0MIYXE486s7XUCUhpRSlGgVTegDaBZHQIBclZowmE51fZQoaAZoCWgPQwgiUWhZ93lZQJSGlFKUaBVN6ANoFkdAgGooGpuMuXV9lChoBmgJaA9DCOWdQxmqIV/AlIaUUpRoFU2YAWgWR0CAayGD+R5kdX2UKGgGaAloD0MICwvuB7xUZECUhpRSlGgVTegDaBZHQIB6YCOmzjZ1fZQoaAZoCWgPQwjDgvsBj9dkQJSGlFKUaBVN6ANoFkdAgHt3oC+10HV9lChoBmgJaA9DCOY8Y1+y6VVAlIaUUpRoFU3oA2gWR0CAfO2WIGhVdX2UKGgGaAloD0MITgte9BVoXUCUhpRSlGgVTegDaBZHQICiGvKU3XJ1fZQoaAZoCWgPQwgP7s7abdliQJSGlFKUaBVN6ANoFkdAgKOcfV7QcHV9lChoBmgJaA9DCIB+37/5ImFAlIaUUpRoFU3oA2gWR0CAqqnn+yZ8dX2UKGgGaAloD0MIoImw4ekoVECUhpRSlGgVTegDaBZHQICxr0J4SpR1fZQoaAZoCWgPQwimtP6WAA1fQJSGlFKUaBVN6ANoFkdAgPWqsuFpPHV9lChoBmgJaA9DCNoDrcCQWUVAlIaUUpRoFU3oA2gWR0CA908h9srNdX2UKGgGaAloD0MIDk5EvzaPYUCUhpRSlGgVTegDaBZHQID5/0se4kN1fZQoaAZoCWgPQwi7ufjbnllhQJSGlFKUaBVN6ANoFkdAgQBM3AEdNnV9lChoBmgJaA9DCG1UpwNZRF9AlIaUUpRoFU3oA2gWR0CBE6H0se4kdX2UKGgGaAloD0MIGTigpStmUkCUhpRSlGgVTegDaBZHQIEWMFr2xpt1fZQoaAZoCWgPQwgTu7a3W5IJQJSGlFKUaBVNEwFoFkdAgR6MO5J9RnV9lChoBmgJaA9DCPlp3JvfhGVAlIaUUpRoFU3oA2gWR0CBJgBClabGdX2UKGgGaAloD0MIgJwwYbRiYkCUhpRSlGgVTegDaBZHQIE0u4Vh1DB1fZQoaAZoCWgPQwgA5lq0AFVVQJSGlFKUaBVN6ANoFkdAgTXao2n89HV9lChoBmgJaA9DCK6Dg70JVWBAlIaUUpRoFU3oA2gWR0CBRz7ojfNzdX2UKGgGaAloD0MImIqNeZ2fYkCUhpRSlGgVTegDaBZHQIFIciUxEfF1fZQoaAZoCWgPQwj3ItqOqY9gQJSGlFKUaBVN6ANoFkdAgUpY8Md92HV9lChoBmgJaA9DCIBFfv0QUy7AlIaUUpRoFU0HAWgWR0CBUER28qWkdX2UKGgGaAloD0MIOpShKqbjYUCUhpRSlGgVTegDaBZHQIF0fy5I6Kd1fZQoaAZoCWgPQwgujV94JZlRQJSGlFKUaBVN6ANoFkdAgXYmkN4JNXV9lChoBmgJaA9DCGJNZVHYKT1AlIaUUpRoFU3oA2gWR0CBfdXgccU/dX2UKGgGaAloD0MITGvT2F4CYUCUhpRSlGgVTegDaBZHQIGFWRYA80V1fZQoaAZoCWgPQwhh3Xh3ZP9hQJSGlFKUaBVN6ANoFkdAgctBlMAWBXV9lChoBmgJaA9DCObOTDAc8mNAlIaUUpRoFU3oA2gWR0CB0EhStNi6dX2UKGgGaAloD0MIVDasqSwoX0CUhpRSlGgVTegDaBZHQIHXTUgB91F1fZQoaAZoCWgPQwgZOQt7Wj5hQJSGlFKUaBVN6ANoFkdAgev/huO0cHV9lChoBmgJaA9DCBVWKqgosWRAlIaUUpRoFU3oA2gWR0CB7thE0BOpdX2UKGgGaAloD0MIou4DkNqqWkCUhpRSlGgVTegDaBZHQIH3xB/qgRN1fZQoaAZoCWgPQwgAWB050vxfQJSGlFKUaBVN6ANoFkdAgg11nmJWNnV9lChoBmgJaA9DCKCmlq31L1hAlIaUUpRoFU3oA2gWR0CCDoRGtp22dX2UKGgGaAloD0MIgV1NnrIoXUCUhpRSlGgVTegDaBZHQIIeL8FY+0R1fZQoaAZoCWgPQwhPB7Ke2t1gQJSGlFKUaBVN6ANoFkdAgh9bQLNOd3V9lChoBmgJaA9DCMgMVMY/MGFAlIaUUpRoFU3oA2gWR0CCISEdvKlpdX2UKGgGaAloD0MIWONsOoJ4aUCUhpRSlGgVTegDaBZHQIImWFJxvNx1fZQoaAZoCWgPQwi2K/TBMglXQJSGlFKUaBVN6ANoFkdAgkY4PwuuinV9lChoBmgJaA9DCCyAKQMHuWJAlIaUUpRoFU3oA2gWR0CCR5PgNwzddX2UKGgGaAloD0MIHJqy04+8YECUhpRSlGgVTegDaBZHQIJOk4m1IAh1fZQoaAZoCWgPQwj0piIVxmVbQJSGlFKUaBVN6ANoFkdAglWxrBTGYXV9lChoBmgJaA9DCFqfckwWF2FAlIaUUpRoFU3oA2gWR0CCm8joIOYqdX2UKGgGaAloD0MIstZQai9qXkCUhpRSlGgVTegDaBZHQIKgjfBN21V1fZQoaAZoCWgPQwhqUDQPYOZYQJSGlFKUaBVN6ANoFkdAgqfuEug6EXV9lChoBmgJaA9DCJ595UF682BAlIaUUpRoFU3oA2gWR0CCvK3vQWvbdX2UKGgGaAloD0MIpg2HpYHZYUCUhpRSlGgVTegDaBZHQIK/g+fRNRF1fZQoaAZoCWgPQwgQlrGhm95eQJSGlFKUaBVN6ANoFkdAgsg6+N96TnV9lChoBmgJaA9DCNb8+EsLvWBAlIaUUpRoFU3oA2gWR0CC3eLNOdoWdX2UKGgGaAloD0MIBAMIH8pGYkCUhpRSlGgVTegDaBZHQILe5HNHH3l1fZQoaAZoCWgPQwirXn6nyQ1dQJSGlFKUaBVN6ANoFkdAgu6tNahYeXV9lChoBmgJaA9DCK2kFd/QOGFAlIaUUpRoFU3oA2gWR0CC78ucMEzPdX2UKGgGaAloD0MI7E53nnjwYUCUhpRSlGgVTegDaBZHQILxXgtOEdx1fZQoaAZoCWgPQwiMZI9Qs8liQJSGlFKUaBVN6ANoFkdAgvaatcObzHV9lChoBmgJaA9DCEVKs3kcZiLAlIaUUpRoFUvbaBZHQIMMzlzU7S11fZQoaAZoCWgPQwjvkjgroqplQJSGlFKUaBVN6ANoFkdAgxTme+VTrHV9lChoBmgJaA9DCDiB6bRubWdAlIaUUpRoFU3oA2gWR0CDFlM9r434dX2UKGgGaAloD0MIOllqvd/ZYECUhpRSlGgVTegDaBZHQIMdDh99c8l1fZQoaAZoCWgPQwhv2LYos0lfQJSGlFKUaBVN6ANoFkdAgyPHscABDHV9lChoBmgJaA9DCJxNRwC3dmJAlIaUUpRoFU3oA2gWR0CDMTbYbsF/dX2UKGgGaAloD0MIGk8EcR7XY0CUhpRSlGgVTegDaBZHQINtLD63y7R1fZQoaAZoCWgPQwgldJfEWU05QJSGlFKUaBVL+GgWR0CDcpAVwgkkdX2UKGgGaAloD0MIjDBFuTSTWUCUhpRSlGgVTegDaBZHQIN0M12q1gJ1fZQoaAZoCWgPQwh4X5ULlTc3QJSGlFKUaBVL6WgWR0CDfhmQKa5PdX2UKGgGaAloD0MIwTdNnx0SYECUhpRSlGgVTegDaBZHQIOIi8lHBk91fZQoaAZoCWgPQwi5pkBmZ0ZdQJSGlFKUaBVN6ANoFkdAg4tL+5vtMXV9lChoBmgJaA9DCBubHam+A0BAlIaUUpRoFUvuaBZHQIOQv3nIQvp1fZQoaAZoCWgPQwhxWYXNALcDQJSGlFKUaBVLzWgWR0CDkSmQbMoudX2UKGgGaAloD0MItvKS/8l9WkCUhpRSlGgVTegDaBZHQIOTTVJ+UhV1fZQoaAZoCWgPQwgteNFXEK5iQJSGlFKUaBVN6ANoFkdAg6XvFWGRFXV9lChoBmgJaA9DCMMOY9Lfgl5AlIaUUpRoFU3oA2gWR0CDptBl+VkddX2UKGgGaAloD0MI12g50EMfYECUhpRSlGgVTegDaBZHQIO2u23KB/Z1fZQoaAZoCWgPQwjw2xDjNexeQJSGlFKUaBVN6ANoFkdAg7haEi+tbXV9lChoBmgJaA9DCOOL9nghYmVAlIaUUpRoFU3oA2gWR0CDvdDqnm7rdX2UKGgGaAloD0MIIUCGjh0uYUCUhpRSlGgVTegDaBZHQIPU35Lytmt1fZQoaAZoCWgPQwiUFcPVAdNjQJSGlFKUaBVN6ANoFkdAg90O4gA6uHV9lChoBmgJaA9DCDurBfYYXmRAlIaUUpRoFU3oA2gWR0CD5aqS5iEydX2UKGgGaAloD0MI7MIPzqerX0CUhpRSlGgVTegDaBZHQIP7qpYLb6B1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo_train_1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:163c5023ca3cdc4e35b5c84924d4daf18a617c23d3004f8b44fdd5e88da00a67
|
3 |
+
size 144039
|
ppo_train_1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo_train_1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fe3842fd830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fe3842fd8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fe3842fd950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fe3842fd9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fe3842fda70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fe3842fdb00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fe3842fdb90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fe3842fdc20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fe3842fdcb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fe3842fdd40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fe3842fddd0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fe3842d6090>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652087288.396448,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMCUlr32TCy6/b1uO4NG2DaHr005dsTBNQAAgD8AAIA/ACyLPPYkErqY3Wy7BWStN37G47rqECs6AACAPwAAgD9NQVY+jiG9PuepjL5RkJ++1hsYvEOIuL0AAAAAAAAAADNn1bwp5Fy66kqKOa+1CjWW6jY7kLyfuAAAgD8AAIA/c06jPez5gLnnYzS5FyuPtF7c7jkodlU4AACAPwAAgD8ghAs+e7j5uqYJl7sLeJM4S7aDu4qUfDoAAIA/AACAP3PEjD3XQzK5ilOivGXXOrlC7Oq6YrEGPQAAAAAAAAAAmu/xPK6Vk7peQ8G7yzoss4yWUzqu70IzAACAPwAAgD8NZ4899hRtuhV9Cbx2WJw17hQmOmiyD7UAAIA/AACAP/Os2j1cX0y640LiOqI4irXR0aS7NBoEugAAgD8AAIA/5hNIPWzyijzheiM+LBJQvRW41j0525q9AAAAAAAAAADN9iW8jw4+uvL9qjqJNnI1NOYeuqjxwLkAAIA/AACAPzP0zTwUKIK6QjGSumKcgLQ8Uru6TdylOQAAgD8AAIA/M5MHvnbqND328sQ+BroJvu4ULj2a0Jg8AAAAAAAAAADNnrI8cESvP/rKST16XN6+Z1QKPnP7lz0AAAAAAAAAADMygzzD5RI5DvbAOYYlqjUQiTe6gnDmuAAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVehAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIOzQsRl3jWUCUhpRSlIwBbJRN6AOMAXSUR0B/AUwDeTFEdX2UKGgGaAloD0MIKxTpfk4pYkCUhpRSlGgVTegDaBZHQH8Q1Oj7AL11fZQoaAZoCWgPQwjxftx++VteQJSGlFKUaBVN6ANoFkdAfx5bAk9lmXV9lChoBmgJaA9DCA9CQL4EhGZAlIaUUpRoFU1XA2gWR0B/ONGLDQ7cdX2UKGgGaAloD0MI5UF6ihzeO0CUhpRSlGgVS/xoFkdAf1r7sOXmeXV9lChoBmgJaA9DCL3l6scmTlRAlIaUUpRoFU3oA2gWR0B/XN0T101ZdX2UKGgGaAloD0MIzbBR1m9eWECUhpRSlGgVTegDaBZHQH9dUjX4CZF1fZQoaAZoCWgPQwiVKlH2li5fQJSGlFKUaBVN6ANoFkdAf2CzTF2mpHV9lChoBmgJaA9DCLXAHhMppSFAlIaUUpRoFUvcaBZHQH+fvfTCtRx1fZQoaAZoCWgPQwhWLekoB/diQJSGlFKUaBVN6ANoFkdAf67Rm9QGfXV9lChoBmgJaA9DCMFwrmGGvlxAlIaUUpRoFU3oA2gWR0B/scSPEKmbdX2UKGgGaAloD0MIchqiCn/HYUCUhpRSlGgVTegDaBZHQH/AG5hBqsV1fZQoaAZoCWgPQwhjDRe5p5JcQJSGlFKUaBVN6ANoFkdAf85HsTnJT3V9lChoBmgJaA9DCGba/pWVCGNAlIaUUpRoFU3oA2gWR0CAK6n0Cih4dX2UKGgGaAloD0MI6znpfWNaZECUhpRSlGgVTegDaBZHQIAtZ11W8yx1fZQoaAZoCWgPQwjxDYXP1sH1v5SGlFKUaBVNBAFoFkdAgC9HHNorWnV9lChoBmgJaA9DCOWYLO4/fV1AlIaUUpRoFU3oA2gWR0CAMCpI+W4WdX2UKGgGaAloD0MIB7Ezhc4dYECUhpRSlGgVTegDaBZHQIA2aKiwjdJ1fZQoaAZoCWgPQwiC5nPudi9cQJSGlFKUaBVN6ANoFkdAgErvjGT9sXV9lChoBmgJaA9DCFjjbDqCZWFAlIaUUpRoFU3oA2gWR0CATYdT5wfhdX2UKGgGaAloD0MIYXE486s7XUCUhpRSlGgVTegDaBZHQIBclZowmE51fZQoaAZoCWgPQwgiUWhZ93lZQJSGlFKUaBVN6ANoFkdAgGooGpuMuXV9lChoBmgJaA9DCOWdQxmqIV/AlIaUUpRoFU2YAWgWR0CAayGD+R5kdX2UKGgGaAloD0MICwvuB7xUZECUhpRSlGgVTegDaBZHQIB6YCOmzjZ1fZQoaAZoCWgPQwjDgvsBj9dkQJSGlFKUaBVN6ANoFkdAgHt3oC+10HV9lChoBmgJaA9DCOY8Y1+y6VVAlIaUUpRoFU3oA2gWR0CAfO2WIGhVdX2UKGgGaAloD0MITgte9BVoXUCUhpRSlGgVTegDaBZHQICiGvKU3XJ1fZQoaAZoCWgPQwgP7s7abdliQJSGlFKUaBVN6ANoFkdAgKOcfV7QcHV9lChoBmgJaA9DCIB+37/5ImFAlIaUUpRoFU3oA2gWR0CAqqnn+yZ8dX2UKGgGaAloD0MIoImw4ekoVECUhpRSlGgVTegDaBZHQICxr0J4SpR1fZQoaAZoCWgPQwimtP6WAA1fQJSGlFKUaBVN6ANoFkdAgPWqsuFpPHV9lChoBmgJaA9DCNoDrcCQWUVAlIaUUpRoFU3oA2gWR0CA908h9srNdX2UKGgGaAloD0MIDk5EvzaPYUCUhpRSlGgVTegDaBZHQID5/0se4kN1fZQoaAZoCWgPQwi7ufjbnllhQJSGlFKUaBVN6ANoFkdAgQBM3AEdNnV9lChoBmgJaA9DCG1UpwNZRF9AlIaUUpRoFU3oA2gWR0CBE6H0se4kdX2UKGgGaAloD0MIGTigpStmUkCUhpRSlGgVTegDaBZHQIEWMFr2xpt1fZQoaAZoCWgPQwgTu7a3W5IJQJSGlFKUaBVNEwFoFkdAgR6MO5J9RnV9lChoBmgJaA9DCPlp3JvfhGVAlIaUUpRoFU3oA2gWR0CBJgBClabGdX2UKGgGaAloD0MIgJwwYbRiYkCUhpRSlGgVTegDaBZHQIE0u4Vh1DB1fZQoaAZoCWgPQwgA5lq0AFVVQJSGlFKUaBVN6ANoFkdAgTXao2n89HV9lChoBmgJaA9DCK6Dg70JVWBAlIaUUpRoFU3oA2gWR0CBRz7ojfNzdX2UKGgGaAloD0MImIqNeZ2fYkCUhpRSlGgVTegDaBZHQIFIciUxEfF1fZQoaAZoCWgPQwj3ItqOqY9gQJSGlFKUaBVN6ANoFkdAgUpY8Md92HV9lChoBmgJaA9DCIBFfv0QUy7AlIaUUpRoFU0HAWgWR0CBUER28qWkdX2UKGgGaAloD0MIOpShKqbjYUCUhpRSlGgVTegDaBZHQIF0fy5I6Kd1fZQoaAZoCWgPQwgujV94JZlRQJSGlFKUaBVN6ANoFkdAgXYmkN4JNXV9lChoBmgJaA9DCGJNZVHYKT1AlIaUUpRoFU3oA2gWR0CBfdXgccU/dX2UKGgGaAloD0MITGvT2F4CYUCUhpRSlGgVTegDaBZHQIGFWRYA80V1fZQoaAZoCWgPQwhh3Xh3ZP9hQJSGlFKUaBVN6ANoFkdAgctBlMAWBXV9lChoBmgJaA9DCObOTDAc8mNAlIaUUpRoFU3oA2gWR0CB0EhStNi6dX2UKGgGaAloD0MIVDasqSwoX0CUhpRSlGgVTegDaBZHQIHXTUgB91F1fZQoaAZoCWgPQwgZOQt7Wj5hQJSGlFKUaBVN6ANoFkdAgev/huO0cHV9lChoBmgJaA9DCBVWKqgosWRAlIaUUpRoFU3oA2gWR0CB7thE0BOpdX2UKGgGaAloD0MIou4DkNqqWkCUhpRSlGgVTegDaBZHQIH3xB/qgRN1fZQoaAZoCWgPQwgAWB050vxfQJSGlFKUaBVN6ANoFkdAgg11nmJWNnV9lChoBmgJaA9DCKCmlq31L1hAlIaUUpRoFU3oA2gWR0CCDoRGtp22dX2UKGgGaAloD0MIgV1NnrIoXUCUhpRSlGgVTegDaBZHQIIeL8FY+0R1fZQoaAZoCWgPQwhPB7Ke2t1gQJSGlFKUaBVN6ANoFkdAgh9bQLNOd3V9lChoBmgJaA9DCMgMVMY/MGFAlIaUUpRoFU3oA2gWR0CCISEdvKlpdX2UKGgGaAloD0MIWONsOoJ4aUCUhpRSlGgVTegDaBZHQIImWFJxvNx1fZQoaAZoCWgPQwi2K/TBMglXQJSGlFKUaBVN6ANoFkdAgkY4PwuuinV9lChoBmgJaA9DCCyAKQMHuWJAlIaUUpRoFU3oA2gWR0CCR5PgNwzddX2UKGgGaAloD0MIHJqy04+8YECUhpRSlGgVTegDaBZHQIJOk4m1IAh1fZQoaAZoCWgPQwj0piIVxmVbQJSGlFKUaBVN6ANoFkdAglWxrBTGYXV9lChoBmgJaA9DCFqfckwWF2FAlIaUUpRoFU3oA2gWR0CCm8joIOYqdX2UKGgGaAloD0MIstZQai9qXkCUhpRSlGgVTegDaBZHQIKgjfBN21V1fZQoaAZoCWgPQwhqUDQPYOZYQJSGlFKUaBVN6ANoFkdAgqfuEug6EXV9lChoBmgJaA9DCJ595UF682BAlIaUUpRoFU3oA2gWR0CCvK3vQWvbdX2UKGgGaAloD0MIpg2HpYHZYUCUhpRSlGgVTegDaBZHQIK/g+fRNRF1fZQoaAZoCWgPQwgQlrGhm95eQJSGlFKUaBVN6ANoFkdAgsg6+N96TnV9lChoBmgJaA9DCNb8+EsLvWBAlIaUUpRoFU3oA2gWR0CC3eLNOdoWdX2UKGgGaAloD0MIBAMIH8pGYkCUhpRSlGgVTegDaBZHQILe5HNHH3l1fZQoaAZoCWgPQwirXn6nyQ1dQJSGlFKUaBVN6ANoFkdAgu6tNahYeXV9lChoBmgJaA9DCK2kFd/QOGFAlIaUUpRoFU3oA2gWR0CC78ucMEzPdX2UKGgGaAloD0MI7E53nnjwYUCUhpRSlGgVTegDaBZHQILxXgtOEdx1fZQoaAZoCWgPQwiMZI9Qs8liQJSGlFKUaBVN6ANoFkdAgvaatcObzHV9lChoBmgJaA9DCEVKs3kcZiLAlIaUUpRoFUvbaBZHQIMMzlzU7S11fZQoaAZoCWgPQwjvkjgroqplQJSGlFKUaBVN6ANoFkdAgxTme+VTrHV9lChoBmgJaA9DCDiB6bRubWdAlIaUUpRoFU3oA2gWR0CDFlM9r434dX2UKGgGaAloD0MIOllqvd/ZYECUhpRSlGgVTegDaBZHQIMdDh99c8l1fZQoaAZoCWgPQwhv2LYos0lfQJSGlFKUaBVN6ANoFkdAgyPHscABDHV9lChoBmgJaA9DCJxNRwC3dmJAlIaUUpRoFU3oA2gWR0CDMTbYbsF/dX2UKGgGaAloD0MIGk8EcR7XY0CUhpRSlGgVTegDaBZHQINtLD63y7R1fZQoaAZoCWgPQwgldJfEWU05QJSGlFKUaBVL+GgWR0CDcpAVwgkkdX2UKGgGaAloD0MIjDBFuTSTWUCUhpRSlGgVTegDaBZHQIN0M12q1gJ1fZQoaAZoCWgPQwh4X5ULlTc3QJSGlFKUaBVL6WgWR0CDfhmQKa5PdX2UKGgGaAloD0MIwTdNnx0SYECUhpRSlGgVTegDaBZHQIOIi8lHBk91fZQoaAZoCWgPQwi5pkBmZ0ZdQJSGlFKUaBVN6ANoFkdAg4tL+5vtMXV9lChoBmgJaA9DCBubHam+A0BAlIaUUpRoFUvuaBZHQIOQv3nIQvp1fZQoaAZoCWgPQwhxWYXNALcDQJSGlFKUaBVLzWgWR0CDkSmQbMoudX2UKGgGaAloD0MItvKS/8l9WkCUhpRSlGgVTegDaBZHQIOTTVJ+UhV1fZQoaAZoCWgPQwgteNFXEK5iQJSGlFKUaBVN6ANoFkdAg6XvFWGRFXV9lChoBmgJaA9DCMMOY9Lfgl5AlIaUUpRoFU3oA2gWR0CDptBl+VkddX2UKGgGaAloD0MI12g50EMfYECUhpRSlGgVTegDaBZHQIO2u23KB/Z1fZQoaAZoCWgPQwjw2xDjNexeQJSGlFKUaBVN6ANoFkdAg7haEi+tbXV9lChoBmgJaA9DCOOL9nghYmVAlIaUUpRoFU3oA2gWR0CDvdDqnm7rdX2UKGgGaAloD0MIIUCGjh0uYUCUhpRSlGgVTegDaBZHQIPU35Lytmt1fZQoaAZoCWgPQwiUFcPVAdNjQJSGlFKUaBVN6ANoFkdAg90O4gA6uHV9lChoBmgJaA9DCDurBfYYXmRAlIaUUpRoFU3oA2gWR0CD5aqS5iEydX2UKGgGaAloD0MI7MIPzqerX0CUhpRSlGgVTegDaBZHQIP7qpYLb6B1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo_train_1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bd2781c658f18cd97681c0f10ebbf342bf67a91a8e6bb4c22f822815e95a0d1f
|
3 |
+
size 84829
|
ppo_train_1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6ea287a186b26093334e99a1c82eff9179dfb3573f40e5ef0bba7c21a076f504
|
3 |
+
size 43201
|
ppo_train_1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo_train_1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8e4bd0c870dc3c5bc317e919dbf4339fc9936f2c88790108fbc5206edca26f2b
|
3 |
+
size 238492
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 203.8790733456819, "std_reward": 20.921536152955873, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-09T09:22:23.242527"}
|