Climate-TwitterBERT commited on
Commit
eb7114b
·
1 Parent(s): 54d9f35

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +9 -9
README.md CHANGED
@@ -19,12 +19,12 @@ should probably proofread and complete it, then remove this comment. -->
19
 
20
  This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
- - Loss: 0.3607
23
  - Accuracy: 0.888
24
- - Precision: 0.7544
25
- - Recall: 0.7544
26
- - F1-weighted: 0.888
27
- - F1: 0.7544
28
 
29
  ## Model description
30
 
@@ -43,7 +43,7 @@ More information needed
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
- - learning_rate: 5e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 2
49
  - seed: 42
@@ -58,9 +58,9 @@ The following hyperparameters were used during training:
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
60
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
61
- | 0.4175 | 3.64 | 50 | 0.2775 | 0.912 | 0.8070 | 0.8070 | 0.912 | 0.8070 |
62
- | 0.1843 | 7.27 | 100 | 0.2945 | 0.908 | 0.8542 | 0.7193 | 0.9051 | 0.7810 |
63
- | 0.0731 | 10.91 | 150 | 0.3607 | 0.888 | 0.7544 | 0.7544 | 0.888 | 0.7544 |
64
 
65
 
66
  ### Framework versions
 
19
 
20
  This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset.
21
  It achieves the following results on the evaluation set:
22
+ - Loss: 0.3348
23
  - Accuracy: 0.888
24
+ - Precision: 0.7843
25
+ - Recall: 0.7018
26
+ - F1-weighted: 0.8857
27
+ - F1: 0.7407
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 16
48
  - eval_batch_size: 2
49
  - seed: 42
 
58
 
59
  | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 |
60
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:|
61
+ | 0.4411 | 3.64 | 50 | 0.3396 | 0.876 | 0.8611 | 0.5439 | 0.8652 | 0.6667 |
62
+ | 0.1872 | 7.27 | 100 | 0.3182 | 0.876 | 0.6912 | 0.8246 | 0.8796 | 0.7520 |
63
+ | 0.0724 | 10.91 | 150 | 0.3348 | 0.888 | 0.7843 | 0.7018 | 0.8857 | 0.7407 |
64
 
65
 
66
  ### Framework versions