--- license: mit tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: Climate-TwitterBERT-xmas results: [] --- # Climate-TwitterBERT-xmas This model is a fine-tuned version of [digitalepidemiologylab/covid-twitter-bert-v2](https://huggingface.co/digitalepidemiologylab/covid-twitter-bert-v2) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3607 - Accuracy: 0.888 - Precision: 0.7544 - Recall: 0.7544 - F1-weighted: 0.888 - F1: 0.7544 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 12 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1-weighted | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:-----------:|:------:| | 0.4175 | 3.64 | 50 | 0.2775 | 0.912 | 0.8070 | 0.8070 | 0.912 | 0.8070 | | 0.1843 | 7.27 | 100 | 0.2945 | 0.908 | 0.8542 | 0.7193 | 0.9051 | 0.7810 | | 0.0731 | 10.91 | 150 | 0.3607 | 0.888 | 0.7544 | 0.7544 | 0.888 | 0.7544 | ### Framework versions - Transformers 4.28.1 - Pytorch 2.1.0+cu121 - Datasets 2.16.1 - Tokenizers 0.13.3