from dataclasses import dataclass, field from typing import Optional import torch from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoModelForSequenceClassification, AutoTokenizer, HfArgumentParser @dataclass class ScriptArguments: """ The input names representing the Adapter and Base model fine-tuned with PEFT, and the output name representing the merged model. """ adapter_model_name: Optional[str] = field(default=None, metadata={"help": "the adapter name"}) base_model_name: Optional[str] = field(default=None, metadata={"help": "the base model name"}) output_name: Optional[str] = field(default=None, metadata={"help": "the merged model name"}) parser = HfArgumentParser(ScriptArguments) script_args = parser.parse_args_into_dataclasses()[0] assert script_args.adapter_model_name is not None, "please provide the name of the Adapter you would like to merge" assert script_args.base_model_name is not None, "please provide the name of the Base model" assert script_args.output_name is not None, "please provide the output name of the merged model" peft_config = PeftConfig.from_pretrained(script_args.adapter_model_name) if peft_config.task_type == "SEQ_CLS": # The sequence classification task is used for the reward model in PPO model = AutoModelForSequenceClassification.from_pretrained( script_args.base_model_name, num_labels=1, torch_dtype=torch.bfloat16 ) else: model = AutoModelForCausalLM.from_pretrained( script_args.base_model_name, return_dict=True, torch_dtype=torch.bfloat16 ) tokenizer = AutoTokenizer.from_pretrained(script_args.base_model_name) # Load the PEFT model model = PeftModel.from_pretrained(model, script_args.adapter_model_name) model.eval() model = model.merge_and_unload() model.save_pretrained(f"{script_args.output_name}") tokenizer.save_pretrained(f"{script_args.output_name}") model.push_to_hub(f"{script_args.output_name}", use_temp_dir=False)