File size: 5,439 Bytes
fa4458a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
import unittest
from unittest.mock import patch

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer

from .testing_utils import is_peft_available, require_peft


class DummyDataset(torch.utils.data.Dataset):
    def __init__(self, query_data, response_data):
        self.query_data = query_data
        self.response_data = response_data

    def __len__(self):
        return len(self.query_data)

    def __getitem__(self, idx):
        return self.query_data[idx], self.response_data[idx]


EXPECTED_STATS = [
    "objective/kl",
    "objective/kl_dist",
    "objective/logprobs",
    "objective/ref_logprobs",
    "objective/kl_coef",
    "objective/entropy",
    "ppo/mean_non_score_reward",
    "ppo/loss/policy",
    "ppo/loss/value",
    "ppo/loss/total",
    "ppo/policy/entropy",
    "ppo/policy/approxkl",
    "ppo/policy/policykl",
    "ppo/policy/clipfrac",
    "ppo/policy/advantages",
    "ppo/policy/advantages_mean",
    "ppo/policy/ratio",
    "ppo/returns/mean",
    "ppo/returns/var",
    "ppo/val/vpred",
    "ppo/val/error",
    "ppo/val/clipfrac",
    "ppo/val/mean",
    "ppo/val/var",
    "ppo/val/var_explained",
    "time/ppo/forward_pass",
    "time/ppo/compute_rewards",
    "time/ppo/optimize_step",
    "time/ppo/calc_stats",
    "time/ppo/total",
    "ppo/learning_rate",
]


@require_peft
class TestPeftDependancy(unittest.TestCase):
    def setUp(self):
        self.causal_lm_model_id = "trl-internal-testing/tiny-random-GPTNeoXForCausalLM"
        self.seq_to_seq_model_id = "trl-internal-testing/tiny-random-T5ForConditionalGeneration"

        if is_peft_available():
            from peft import LoraConfig, get_peft_model

            lora_config = LoraConfig(
                r=16,
                lora_alpha=32,
                lora_dropout=0.05,
                bias="none",
                task_type="CAUSAL_LM",
            )

            causal_lm_model = AutoModelForCausalLM.from_pretrained(self.causal_lm_model_id)
            self.peft_model = get_peft_model(causal_lm_model, lora_config)

    def test_no_peft(self):
        with patch.dict(sys.modules, {"peft": None}):
            from trl import AutoModelForCausalLMWithValueHead, AutoModelForSeq2SeqLMWithValueHead

            # Check that loading a model with `peft` will raise an error
            with self.assertRaises(ModuleNotFoundError):
                import peft  # noqa

            trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(self.causal_lm_model_id)  # noqa
            trl_seq2seq_model = AutoModelForSeq2SeqLMWithValueHead.from_pretrained(self.seq_to_seq_model_id)  # noqa

    def test_imports_no_peft(self):
        with patch.dict(sys.modules, {"peft": None}):
            from trl import (  # noqa
                AutoModelForCausalLMWithValueHead,
                AutoModelForSeq2SeqLMWithValueHead,
                PPOConfig,
                PPOTrainer,
                PreTrainedModelWrapper,
            )

    def test_ppo_trainer_no_peft(self):
        with patch.dict(sys.modules, {"peft": None}):
            from trl import AutoModelForCausalLMWithValueHead, PPOConfig, PPOTrainer

            ppo_model_id = "trl-internal-testing/dummy-GPT2-correct-vocab"

            trl_model = AutoModelForCausalLMWithValueHead.from_pretrained(ppo_model_id)
            tokenizer = AutoTokenizer.from_pretrained(ppo_model_id)
            tokenizer.pad_token_id = tokenizer.eos_token_id

            ppo_config = PPOConfig(batch_size=2, mini_batch_size=1, log_with=None)

            dummy_dataset = DummyDataset(
                [torch.LongTensor([0, 1, 0, 1, 0, 1]), torch.LongTensor([0, 1, 0, 1, 0, 1])],
                [torch.LongTensor([1, 0, 1, 0, 1, 0]), torch.LongTensor([0, 1, 0, 1, 0, 1])],
            )

            ppo_trainer = PPOTrainer(
                config=ppo_config,
                model=trl_model,
                ref_model=None,
                tokenizer=tokenizer,
                dataset=dummy_dataset,
            )
            dummy_dataloader = ppo_trainer.dataloader

            for query_tensor, response_tensor in dummy_dataloader:
                # define a reward for response
                # (this could be any reward such as human feedback or output from another model)
                reward = [torch.tensor(1.0), torch.tensor(0.0)]
                # train model
                train_stats = ppo_trainer.step([q for q in query_tensor], [r for r in response_tensor], reward)
                break

            # check gradients are not None
            for _, param in trl_model.named_parameters():
                if param.requires_grad:
                    self.assertIsNotNone(param.grad)

            # check expected stats
            for stat in EXPECTED_STATS:
                self.assertIn(stat, train_stats)