File size: 18,835 Bytes
fa4458a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
# Supervised Fine-tuning Trainer 

Supervised fine-tuning (or SFT for short) is a crucial step in RLHF. In TRL we provide an easy-to-use API to create your SFT models and train them with few lines of code on your dataset.

Check out a complete flexible example at [`examples/scripts/sft.py`](https://github.com/huggingface/trl/tree/main/examples/scripts/sft.py).

## Quickstart

If you have a dataset hosted on the 🤗 Hub, you can easily fine-tune your SFT model using [`SFTTrainer`] from TRL. Let us assume your dataset is `imdb`, the text you want to predict is inside the `text` field of the dataset, and you want to fine-tune the `facebook/opt-350m` model. 
The following code-snippet takes care of all the data pre-processing and training for you:

```python
from datasets import load_dataset
from trl import SFTTrainer

dataset = load_dataset("imdb", split="train")

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    dataset_text_field="text",
    max_seq_length=512,
)
trainer.train()
```
Make sure to pass a correct value for `max_seq_length` as the default value will be set to `min(tokenizer.model_max_length, 1024)`.

You can also construct a model outside of the trainer and pass it as follows:

```python
from transformers import AutoModelForCausalLM
from datasets import load_dataset
from trl import SFTTrainer

dataset = load_dataset("imdb", split="train")

model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    dataset_text_field="text",
    max_seq_length=512,
)

trainer.train()
```

The above snippets will use the default training arguments from the [`transformers.TrainingArguments`](https://huggingface.co/docs/transformers/main_classes/trainer#transformers.TrainingArguments) class. If you want to modify that, make sure to create your own `TrainingArguments` object and pass it to the [`SFTTrainer`] constructor as it is done on the [`supervised_finetuning.py` script](https://github.com/huggingface/trl/blob/main/examples/stack_llama/scripts/supervised_finetuning.py) on the stack-llama example.

## Advanced usage

### Train on completions only 

You can use the `DataCollatorForCompletionOnlyLM` to train your model on the generated prompts only. Note that this works only in the case when `packing=False`.
To instantiate that collator for instruction data, pass a response template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on completions only on the CodeAlpaca dataset:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM

dataset = load_dataset("lucasmccabe-lmi/CodeAlpaca-20k", split="train")

model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

def formatting_prompts_func(example):
    output_texts = []
    for i in range(len(example['instruction'])):
        text = f"### Question: {example['instruction'][i]}\n ### Answer: {example['output'][i]}"
        output_texts.append(text)
    return output_texts

response_template = " ### Answer:"
collator = DataCollatorForCompletionOnlyLM(response_template, tokenizer=tokenizer)

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    formatting_func=formatting_prompts_func,
    data_collator=collator,
)

trainer.train() 
```

To instantiate that collator for assistant style conversation data, pass a response template, an instruction template and the tokenizer. Here is an example of how it would work to fine-tune `opt-350m` on assistant completions only on the Open Assistant Guanaco dataset:

```python
from transformers import AutoModelForCausalLM, AutoTokenizer
from datasets import load_dataset
from trl import SFTTrainer, DataCollatorForCompletionOnlyLM

dataset = load_dataset("timdettmers/openassistant-guanaco", split="train")

model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m")
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-350m")

instruction_template = "### Human:"
response_template = "### Assistant:"
collator = DataCollatorForCompletionOnlyLM(instruction_template=instruction_template, response_template=response_template, tokenizer=tokenizer, mlm=False)

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    dataset_text_field="text",
    data_collator=collator,
)

trainer.train() 
```

Make sure to have a `pad_token_id` which is different from `eos_token_id` which can result in the model not properly predicting EOS (End of Sentence) tokens during generation. 

#### Using token_ids directly for `response_template`

Some tokenizers like Llama 2 (`meta-llama/Llama-2-XXb-hf`) tokenize sequences differently depending whether they have context or not. For example:
    
```python
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-2-7b-hf")

def print_tokens_with_ids(txt):
    tokens = tokenizer.tokenize(txt, add_special_tokens=False)
    token_ids = tokenizer.encode(txt, add_special_tokens=False)
    print(list(zip(tokens, token_ids)))

prompt = """### User: Hello\n\n### Assistant: Hi, how can I help you?"""
print_tokens_with_ids(prompt)  # [..., ('▁Hello', 15043), ('<0x0A>', 13), ('<0x0A>', 13), ('##', 2277), ('#', 29937), ('▁Ass', 4007), ('istant', 22137), (':', 29901), ...]

response_template = "### Assistant:"
print_tokens_with_ids(response_template)  # [('▁###', 835), ('▁Ass', 4007), ('istant', 22137), (':', 29901)]
```

In this case, and due to lack of context in `response_template`, the same string ("### Assistant:") is tokenized differently:
    
    - Text (with context): `[2277, 29937, 4007, 22137, 29901]`
    - `response_template` (without context): `[835, 4007, 22137, 29901]`

This will lead to an error when the `DataCollatorForCompletionOnlyLM` does not find the `response_template` in the dataset example text:

```
RuntimeError: Could not find response key [835, 4007, 22137, 29901] in token IDs tensor([    1,   835,  ...])   
```


To solve this, you can tokenize the `response_template` with the same context than in the dataset, truncate it as needed and pass the `token_ids` directly to the `response_template` argument of the `DataCollatorForCompletionOnlyLM` class. For example:

```python
response_template_with_context = "\n### Assistant:"  # We added context here: "\n". This is enough for this tokenizer
response_template_ids = tokenizer.encode(response_template_with_context, add_special_tokens=False)[2:]  # Now we have it like in the dataset texts: `[2277, 29937, 4007, 22137, 29901]`

data_collator = DataCollatorForCompletionOnlyLM(response_template_ids, tokenizer=tokenizer)
```

### Format your input prompts

For instruction fine-tuning, it is quite common to have two columns inside the dataset: one for the prompt & the other for the response. 
This allows people to format examples like [Stanford-Alpaca](https://github.com/tatsu-lab/stanford_alpaca) did as follows:
```bash
Below is an instruction ...

### Instruction
{prompt}

### Response:
{completion}
```
Let us assume your dataset has two fields, `question` and `answer`. Therefore you can just run:
```python
...
def formatting_prompts_func(example):
    output_texts = []
    for i in range(len(example['question'])):
        text = f"### Question: {example['question'][i]}\n ### Answer: {example['answer'][i]}"
        output_texts.append(text)
    return output_texts

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    formatting_func=formatting_prompts_func,
)

trainer.train()
```
To preperly format your input make sure to process all the examples by looping over them and returning a list of processed text. Check out a full example on how to use SFTTrainer on alpaca dataset [here](https://github.com/huggingface/trl/pull/444#issue-1760952763)

### Packing dataset ([`ConstantLengthDataset`])

[`SFTTrainer`] supports _example packing_, where multiple short examples are packed in the same input sequence to increase training efficiency. This is done with the [`ConstantLengthDataset`] utility class that returns constant length chunks of tokens from a stream of examples. To enable the usage of this dataset class, simply pass `packing=True` to the [`SFTTrainer`] constructor.

```python
...

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    dataset_text_field="text",
    packing=True
)

trainer.train()
```

Note that if you use a packed dataset and if you pass `max_steps` in the training arguments you will probably train your models for more than few epochs, depending on the way you have configured the packed dataset and the training protocol. Double check that you know and understand what you are doing. 

#### Customize your prompts using packed dataset

If your dataset has several fields that you want to combine, for example if the dataset has `question` and `answer` fields and you want to combine them, you can pass a formatting function to the trainer that will take care of that. For example:

```python
def formatting_func(example):
    text = f"### Question: {example['question']}\n ### Answer: {example['answer']}"
    return text

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    packing=True,
    formatting_func=formatting_func
)

trainer.train()
```
You can also customize the [`ConstantLengthDataset`] much more by directly passing the arguments to the [`SFTTrainer`] constructor. Please refer to that class' signature for more information.

### Control over the pretrained model

You can directly pass the kwargs of the `from_pretrained()` method to the [`SFTTrainer`]. For example, if you want to load a model in a different precision, analogous to 

```python
model = AutoModelForCausalLM.from_pretrained("facebook/opt-350m", torch_dtype=torch.bfloat16)
```

```python
...

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    dataset_text_field="text",
    model_init_kwargs={
        "torch_dtype": torch.bfloat16,
    },
)

trainer.train()
```
Note that all keyword arguments of `from_pretrained()` are supported. 

### Training adapters

We also support a tight integration with 🤗 PEFT library so that any user can conveniently train adapters and share them on the Hub instead of training the entire model

```python
from datasets import load_dataset
from trl import SFTTrainer
from peft import LoraConfig

dataset = load_dataset("imdb", split="train")

peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)

trainer = SFTTrainer(
    "EleutherAI/gpt-neo-125m",
    train_dataset=dataset,
    dataset_text_field="text",
    peft_config=peft_config
)

trainer.train()
```

Note that in case of training adapters, we manually add a saving callback to automatically save the adapters only:
```python
class PeftSavingCallback(TrainerCallback):
    def on_save(self, args, state, control, **kwargs):
        checkpoint_path = os.path.join(args.output_dir, f"checkpoint-{state.global_step}")
        kwargs["model"].save_pretrained(checkpoint_path)

        if "pytorch_model.bin" in os.listdir(checkpoint_path):
            os.remove(os.path.join(checkpoint_path, "pytorch_model.bin"))
```
If you want to add more callbacks, make sure to add this one as well to properly save the adapters only during training.
```python
...

callbacks = [YourCustomCallback(), PeftSavingCallback()]

trainer = SFTTrainer(
    "EleutherAI/gpt-neo-125m",
    train_dataset=dataset,
    dataset_text_field="text",
    peft_config=peft_config,
    callbacks=callbacks
)

trainer.train()
```

You can also continue training your `PeftModel`. For that, first load a `PeftModel` outside `SFTTrainer` and pass it directly to the trainer without the `peft_config` argument being passed.

### Training adapters with base 8 bit models 

For that you need to first load your 8bit model outside the Trainer and pass a `PeftConfig` to the trainer. For example:

```python
...

peft_config = LoraConfig(
    r=16,
    lora_alpha=32,
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM",
)

model = AutoModelForCausalLM.from_pretrained(
    "EleutherAI/gpt-neo-125m",
    load_in_8bit=True,
    device_map="auto",
)

trainer = SFTTrainer(
    model,
    train_dataset=dataset,
    dataset_text_field="text",
    peft_config=peft_config,
)

trainer.train()
```

## Using Flash Attention and Flash Attention 2

You can benefit from Flash Attention 1 & 2 using SFTTrainer out of the box with minimal changes of code. 
First, to make sure you have all the latest features from transformers, install transformers from source

```bash
pip install -U git+https://github.com/huggingface/transformers.git
```

Note that Flash Attention only works on GPU now and under half-precision regime (when using adapters, base model loaded in half-precision)
Note also both features are perfectly compatible with other tools such as quantization.

### Using Flash-Attention 1

For Flash Attention 1 you can use the `BetterTransformer` API and force-dispatch the API to use Flash Attention kernel. First, install the latest optimum package:

```bash
pip install -U optimum
```

Once you have loaded your model, wrap the `trainer.train()` call under the `with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):` context manager:

```diff
...

+ with torch.backends.cuda.sdp_kernel(enable_flash=True, enable_math=False, enable_mem_efficient=False):
    trainer.train()
```

Note that you cannot train your model using Flash Attention 1 on an arbitrary dataset as `torch.scaled_dot_product_attention` does not support training with padding tokens if you use Flash Attention kernels. Therefore you can only use that feature with `packing=True`. If your dataset contains padding tokens, consider switching to Flash Attention 2 integration.

Below are some numbers you can get in terms of speedup and memory efficiency, using Flash Attention 1, on a single NVIDIA-T4 16GB.

| use_flash_attn_1 | model_name        | max_seq_len | batch_size | time per training step |
|----------------|-------------------|-------------|------------|------------------------|
| x              | facebook/opt-350m | 2048        | 8          | ~59.1s                 |
|                | facebook/opt-350m | 2048        | 8          | **OOM**                |
| x              | facebook/opt-350m | 2048        | 4          | ~30.3s                 |
|                | facebook/opt-350m | 2048        | 4          | ~148.9s                |

### Using Flash Attention-2

To use Flash Attention 2, first install the latest `flash-attn` package:

```bash
pip install -U flash-attn
```

And add `use_flash_attention_2=True` when calling `from_pretrained`:

```python
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    load_in_4bit=True,
    use_flash_attention_2=True
)
```

If you don't use quantization, make sure your model is loaded in half-precision and dispatch your model on a supported GPU device.
After loading your model, you can either train it as it is, or attach adapters and train adapters on it in case your model is quantized.

In contrary to Flash Attention 1, the integration makes it possible to train your model on an arbitrary dataset that also includes padding tokens.

### Enhance model's performances using NEFTune

NEFTune is a technique to boost the performance of chat models and was introduced by the paper ["NEFTune: Noisy Embeddings Improve Instruction Finetuning"](https://arxiv.org/abs/2310.05914) from Jain et al. it consists of adding noise to the embedding vectors during training. According to the abstract of the paper:

>  Standard finetuning of LLaMA-2-7B using Alpaca achieves 29.79% on AlpacaEval, which rises to 64.69% using noisy embeddings. NEFTune also improves over strong baselines on modern instruction datasets. Models trained with Evol-Instruct see a 10% improvement, with ShareGPT an 8% improvement, and with OpenPlatypus an 8% improvement. Even powerful models further refined with RLHF such as LLaMA-2-Chat benefit from additional training with NEFTune.

<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/neft-screenshot.png">
</div>

To use it in `SFTTrainer` simply pass `neftune_noise_alpha` when creating your `SFTTrainer` instance. Note that to avoid any surprising behaviour, NEFTune is disabled after training to retrieve back the original behaviour of the embedding layer.

```python
from datasets import load_dataset
from trl import SFTTrainer

dataset = load_dataset("imdb", split="train")

trainer = SFTTrainer(
    "facebook/opt-350m",
    train_dataset=dataset,
    dataset_text_field="text",
    max_seq_length=512,
    neftune_noise_alpha=5,
)
trainer.train()
```

We have tested NEFTune by training `mistralai/Mistral-7B-v0.1` on the [OpenAssistant dataset](https://huggingface.co/datasets/timdettmers/openassistant-guanaco) and validated that using NEFTune led to a performance boost of ~25% on MT Bench.

<div style="text-align: center">
<img src="https://huggingface.co/datasets/trl-internal-testing/example-images/resolve/main/images/trl-neftune-mistral-7b.png">
</div>

Note however, that the amount of performance gain is _dataset dependent_ and in particular, applying NEFTune on synthetic datasets like [UltraChat](https://huggingface.co/datasets/stingning/ultrachat) typically produces smaller gains.
## Best practices

Pay attention to the following best practices when training a model with that trainer:

- [`SFTTrainer`] always pads by default the sequences to the `max_seq_length` argument of the [`SFTTrainer`]. If none is passed, the trainer will retrieve that value from the tokenizer. Some tokenizers do not provide default value, so there is a check to retrieve the minimum between 2048 and that value. Make sure to check it before training.
- For training adapters in 8bit, you might need to tweak the arguments of the `prepare_model_for_kbit_training` method from PEFT, hence we advise users to use `prepare_in_int8_kwargs` field, or create the `PeftModel` outside the [`SFTTrainer`] and pass it.
- For a more memory-efficient training using adapters, you can load the base model in 8bit, for that simply add `load_in_8bit` argument when creating the [`SFTTrainer`], or create a base model in 8bit outside the trainer and pass it.  
- If you create a model outside the trainer, make sure to not pass to the trainer any additional keyword arguments that are relative to `from_pretrained()` method.

## SFTTrainer

[[autodoc]] SFTTrainer

## ConstantLengthDataset

[[autodoc]] trainer.ConstantLengthDataset