--- library_name: stable-baselines3 tags: - LunarLander-v2 - deep-reinforcement-learning - reinforcement-learning - stable-baselines3 model-index: - name: PPO MlpPolicy results: - task: type: reinforcement-learning name: reinforcement-learning dataset: name: LunarLander-v2 type: LunarLander-v2 metrics: - type: mean_reward value: 250.80 +/- 15.49 name: mean_reward verified: false --- # **PPO MlpPolicy** Agent playing **LunarLander-v2** This is a trained model of a **PPO MlpPolicy** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3). ## Usage (with Stable-baselines3) TODO: Add your code ```python import gymnasium as gym from huggingface_sb3 import load_from_hub from stable_baselines3 import PPO from stable_baselines3.common.monitor import Monitor from stable_baselines3.common.evaluation import evaluate_policy repo_id = "ChihoonLee3/ppomlppolicy-LunarLander-v2" # The repo_id filename = "ppo-LunarLander-v2.zip" # The model filename.zip # Load the PPO model checkpoint = load_from_hub(repo_id, filename) model = PPO.load(checkpoint, print_system_info=True) # Evaluate the model in LunarLander-v2 environment eval_env = Monitor(gym.make("LunarLander-v2")) mean_reward, std_reward = evaluate_policy(model, eval_env, n_eval_episodes=10, deterministic=True) print(f"mean_reward={mean_reward:.2f} +/- {std_reward}") ```