File size: 16,732 Bytes
ff07ed4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
import os
from tqdm.auto import tqdm
import torch
import numpy as np
from utils.evaluation import cal_3d_position_error, match_2d_greedy, get_matching_dict, compute_prf1, vectorize_distance, calculate_iou
from utils.transforms import pelvis_align, root_align, unNormalize
from utils.visualization import tensor_to_BGR, pad_img
from utils.visualization import vis_meshes_img, vis_boxes, vis_sat, vis_scale_img, get_colors_rgb
from utils.box_ops import box_cxcywh_to_xyxy, box_xyxy_to_cxcywh
from utils.constants import human36_eval_joint, J24_TO_H36M, H36M_TO_MPII
import time
import datetime
import scipy.io as sio
import cv2
import zipfile
import pickle

# for agora evaluation
def select_and_align(smpl_joints, smpl_verts, body_verts_ind):
    joints = smpl_joints[:24, :]
    verts = smpl_verts[body_verts_ind, :]
    assert len(verts.shape) == 2
    verts = pelvis_align(joints, verts)
    joints = pelvis_align(joints)
    return joints, verts


# Modified from agora_evaluation
def evaluate_agora(model, eval_dataloader, conf_thresh,
                        vis = True, vis_step = 40, results_save_path = None,
                        distributed = False, accelerator = None):
    assert results_save_path is not None
    assert accelerator is not None
    num_processes = accelerator.num_processes

    has_kid = ('train' in eval_dataloader.dataset.split and eval_dataloader.dataset.ds_name == 'agora')
    
    os.makedirs(results_save_path,exist_ok=True)
    if vis:
        imgs_save_dir = os.path.join(results_save_path, 'imgs')
        os.makedirs(imgs_save_dir, exist_ok = True)
    
    step = 0
    total_miss_count = 0
    total_count = 0
    total_fp = 0
    mve, mpjpe = [0.], [0.]

    if has_kid:
        kid_total_miss_count = 0
        kid_total_count = 0
        kid_mve, kid_mpjpe = [0.], [0.]

    cur_device = next(model.parameters()).device
    smpl_layer = model.human_model
    body_verts_ind = smpl_layer.body_vertex_idx
    
    progress_bar = tqdm(total=len(eval_dataloader), disable=not accelerator.is_local_main_process)
    progress_bar.set_description('evaluate')
    for itr, (samples, targets) in enumerate(eval_dataloader):
        samples=[sample.to(device = cur_device, non_blocking = True) for sample in samples]
        with torch.no_grad():    
           outputs = model(samples, targets)
        bs = len(targets)
        for idx in range(bs):
            #gt
            gt_j2ds = targets[idx]['j2ds'].cpu().numpy()[:,:24,:]
            gt_j3ds = targets[idx]['j3ds'].cpu().numpy()[:,:24,:]
            gt_verts = targets[idx]['verts'].cpu().numpy()

            #pred
            select_queries_idx = torch.where(outputs['pred_confs'][idx] > conf_thresh)[0]
            pred_j2ds = outputs['pred_j2ds'][idx][select_queries_idx].detach().cpu().numpy()[:,:24,:]
            pred_j3ds = outputs['pred_j3ds'][idx][select_queries_idx].detach().cpu().numpy()[:,:24,:]
            pred_verts = outputs['pred_verts'][idx][select_queries_idx].detach().cpu().numpy()


            matched_verts_idx = []
            assert len(gt_j2ds.shape) == 3 and len(pred_j2ds.shape) == 3
            #matching
            greedy_match = match_2d_greedy(pred_j2ds, gt_j2ds) # tuples are (idx_pred_kps, idx_gt_kps)
            matchDict, falsePositive_count = get_matching_dict(greedy_match)

            #align with matching result
            gt_verts_list, pred_verts_list, gt_joints_list, pred_joints_list = [], [], [], []
            gtIdxs = np.arange(len(gt_j3ds))
            miss_flag = []
            for gtIdx in gtIdxs:
                gt_verts_list.append(gt_verts[gtIdx])
                gt_joints_list.append(gt_j3ds[gtIdx])
                if matchDict[str(gtIdx)] == 'miss' or matchDict[str(
                        gtIdx)] == 'invalid':
                    miss_flag.append(1)
                    pred_verts_list.append([])
                    pred_joints_list.append([])
                else:
                    miss_flag.append(0)
                    pred_joints_list.append(pred_j3ds[matchDict[str(gtIdx)]])
                    pred_verts_list.append(pred_verts[matchDict[str(gtIdx)]])
                    matched_verts_idx.append(matchDict[str(gtIdx)])

            if has_kid:
                gt_kid_list = targets[idx]['kid']

            #calculating 3d errors
            for i, (gt3d, pred) in enumerate(zip(gt_joints_list, pred_joints_list)):
                total_count += 1
                if has_kid and gt_kid_list[i]:
                    kid_total_count += 1

                # Get corresponding ground truth and predicted 3d joints and verts
                if miss_flag[i] == 1:
                    total_miss_count += 1
                    if has_kid and gt_kid_list[i]:
                        kid_total_miss_count += 1
                    continue

                gt3d = gt3d.reshape(-1, 3)
                pred3d = pred.reshape(-1, 3)
                gt3d_verts = gt_verts_list[i].reshape(-1, 3)
                pred3d_verts = pred_verts_list[i].reshape(-1, 3)
                
                gt3d, gt3d_verts = select_and_align(gt3d, gt3d_verts, body_verts_ind)
                pred3d, pred3d_verts = select_and_align(pred3d, pred3d_verts, body_verts_ind)

                #joints
                error_j, pa_error_j = cal_3d_position_error(pred3d, gt3d)
                mpjpe.append(error_j)
                if has_kid and gt_kid_list[i]:
                    kid_mpjpe.append(error_j)
                #vertices
                error_v,pa_error_v = cal_3d_position_error(pred3d_verts, gt3d_verts)
                mve.append(error_v)
                if has_kid and gt_kid_list[i]:
                    kid_mve.append(error_v)


            #counting
            step += 1
            total_fp += falsePositive_count

            img_idx = step + accelerator.process_index*len(eval_dataloader)*bs
            
            if vis and (img_idx%vis_step == 0):
                img_name = targets[idx]['img_path'].split('/')[-1].split('.')[0]
                ori_img = tensor_to_BGR(unNormalize(samples[idx]).cpu())

                # render mesh
                colors = [(1.0, 1.0, 0.9)] * len(gt_verts)
                gt_mesh_img = vis_meshes_img(img = ori_img.copy(),
                                            verts = gt_verts,
                                            smpl_faces = smpl_layer.faces,
                                            cam_intrinsics = targets[idx]['cam_intrinsics'].reshape(3,3).detach().cpu(),
                                            colors = colors)

                colors = [(1.0, 0.6, 0.6)] * len(pred_verts)   
                for i in matched_verts_idx:
                    colors[i] = (0.7, 1.0, 0.4)

                # colors = get_colors_rgb(len(pred_verts))
                pred_mesh_img = vis_meshes_img(img = ori_img.copy(),
                                            verts = pred_verts,
                                            smpl_faces = smpl_layer.faces,
                                            cam_intrinsics = outputs['pred_intrinsics'][idx].reshape(3,3).detach().cpu(),
                                            colors = colors,
                                            )


                if 'enc_outputs' not in outputs:
                    pred_scale_img = np.zeros_like(pred_mesh_img)
                else:
                    enc_out = outputs['enc_outputs']
                    h, w = enc_out['hw'][idx]
                    flatten_map = enc_out['scale_map'].split(enc_out['lens'])[idx].detach().cpu()

                    ys = enc_out['pos_y'].split(enc_out['lens'])[idx]
                    xs = enc_out['pos_x'].split(enc_out['lens'])[idx]
                    scale_map = torch.zeros((h,w,2))
                    scale_map[ys,xs] = flatten_map

                    pred_scale_img = vis_scale_img(img = ori_img.copy(),
                                                   scale_map = scale_map,
                                                   conf_thresh = model.sat_cfg['conf_thresh'],
                                                   patch_size=28)

                pred_boxes = outputs['pred_boxes'][idx][select_queries_idx].detach().cpu()
                pred_boxes = box_cxcywh_to_xyxy(pred_boxes) * model.input_size
                pred_box_img = vis_boxes(ori_img.copy(), pred_boxes, color = (255,0,255))

                # sat
                sat_img = vis_sat(ori_img.copy(),
                                    input_size = model.input_size,
                                    patch_size = 14,
                                    sat_dict = outputs['sat'],
                                    bid = idx)

                ori_img = pad_img(ori_img, model.input_size)

                full_img = np.vstack([np.hstack([ori_img, sat_img]),
                                      np.hstack([pred_scale_img, pred_box_img]),
                                      np.hstack([gt_mesh_img, pred_mesh_img])])

                cv2.imwrite(os.path.join(imgs_save_dir, f'{img_idx}_{img_name}.png'), full_img)
                
        progress_bar.update(1)

    if distributed:
        mve = accelerator.gather_for_metrics(mve)
        mpjpe = accelerator.gather_for_metrics(mpjpe)


        total_miss_count = sum(accelerator.gather_for_metrics([total_miss_count]))
        total_count = sum(accelerator.gather_for_metrics([total_count]))
        total_fp = sum(accelerator.gather_for_metrics([total_fp]))

        if has_kid:
            kid_mve = accelerator.gather_for_metrics(kid_mve)
            kid_mpjpe = accelerator.gather_for_metrics(kid_mpjpe)
            kid_total_miss_count = sum(accelerator.gather_for_metrics([kid_total_miss_count]))
            kid_total_count = sum(accelerator.gather_for_metrics([kid_total_count]))

    if len(mpjpe) <= num_processes:
        return "Failed to evaluate. Keep training!"
    if has_kid and len(kid_mpjpe) <= num_processes:
        return "Failed to evaluate. Keep training!"
    
    precision, recall, f1 = compute_prf1(total_count,total_miss_count,total_fp)
    error_dict = {}
    error_dict['precision'] = precision
    error_dict['recall'] = recall
    error_dict['f1'] = f1

    error_dict['MPJPE'] = round(sum(mpjpe)/(len(mpjpe)-num_processes), 1)
    error_dict['NMJE'] = round(error_dict['MPJPE'] / (f1), 1)
    error_dict['MVE'] = round(sum(mve)/(len(mve)-num_processes), 1)
    error_dict['NMVE'] = round(error_dict['MVE'] / (f1), 1)

    if has_kid:
        kid_precision, kid_recall, kid_f1 = compute_prf1(kid_total_count,kid_total_miss_count,total_fp)
        error_dict['kid_precision'] = kid_precision
        error_dict['kid_recall'] = kid_recall
        error_dict['kid_f1'] = kid_f1

        error_dict['kid-MPJPE'] = round(sum(kid_mpjpe)/(len(kid_mpjpe)-num_processes), 1)
        error_dict['kid-NMJE'] = round(error_dict['kid-MPJPE'] / (kid_f1), 1)
        error_dict['kid-MVE'] = round(sum(kid_mve)/(len(kid_mve)-num_processes), 1)
        error_dict['kid-NMVE'] = round(error_dict['kid-MVE'] / (kid_f1), 1)


    if accelerator.is_main_process:
        with open(os.path.join(results_save_path,'results.txt'),'w') as f:
            for k,v in error_dict.items():
                f.write(f'{k}: {v}\n')

    return error_dict


def test_agora(model, eval_dataloader, conf_thresh, 
                vis = True, vis_step = 400, results_save_path = None,
                distributed = False, accelerator = None):
    assert results_save_path is not None
    assert accelerator is not None

    os.makedirs(os.path.join(results_save_path,'predictions'),exist_ok=True)
    if vis:
        imgs_save_dir = os.path.join(results_save_path, 'imgs')
        os.makedirs(imgs_save_dir, exist_ok = True)
    step = 0
    cur_device = next(model.parameters()).device
    smpl_layer = model.human_model
    
    progress_bar = tqdm(total=len(eval_dataloader), disable=not accelerator.is_local_main_process)
    progress_bar.set_description('testing')
    for itr, (samples, targets) in enumerate(eval_dataloader):
        samples=[sample.to(device = cur_device, non_blocking = True) for sample in samples]
        with torch.no_grad():    
           outputs = model(samples, targets)
        bs = len(targets)
        for idx in range(bs):
            #gt
            img_name = targets[idx]['img_name'].split('.')[0]
            #pred
            select_queries_idx = torch.where(outputs['pred_confs'][idx] > conf_thresh)[0]
            pred_j2ds = np.array(outputs['pred_j2ds'][idx][select_queries_idx].detach().to('cpu'))[:,:24,:]*(3840/model.input_size)
            pred_j3ds = np.array(outputs['pred_j3ds'][idx][select_queries_idx].detach().to('cpu'))[:,:24,:]
            pred_verts = np.array(outputs['pred_verts'][idx][select_queries_idx].detach().to('cpu'))
            pred_poses = np.array(outputs['pred_poses'][idx][select_queries_idx].detach().to('cpu'))
            pred_betas = np.array(outputs['pred_betas'][idx][select_queries_idx].detach().to('cpu'))

            #visualization
            step+=1
            img_idx = step + accelerator.process_index*len(eval_dataloader)*bs
            if vis and (img_idx%vis_step == 0):
                ori_img = tensor_to_BGR(unNormalize(samples[idx]).cpu())
                ori_img = pad_img(ori_img, model.input_size)

                sat_img = vis_sat(ori_img.copy(),
                                    input_size = model.input_size,
                                    patch_size = 14,
                                    sat_dict = outputs['sat'],
                                    bid = idx)
                
                colors = get_colors_rgb(len(pred_verts))
                mesh_img = vis_meshes_img(img = ori_img.copy(),
                                          verts = pred_verts,
                                          smpl_faces = smpl_layer.faces,
                                          colors = colors,
                                          cam_intrinsics = outputs['pred_intrinsics'][idx].detach().cpu())
                
                if 'enc_outputs' not in outputs:
                    pred_scale_img = np.zeros_like(ori_img)
                else:
                    enc_out = outputs['enc_outputs']
                    h, w = enc_out['hw'][idx]
                    flatten_map = enc_out['scale_map'].split(enc_out['lens'])[idx].detach().cpu()

                    ys = enc_out['pos_y'].split(enc_out['lens'])[idx]
                    xs = enc_out['pos_x'].split(enc_out['lens'])[idx]
                    scale_map = torch.zeros((h,w,2))
                    scale_map[ys,xs] = flatten_map
                    pred_scale_img = vis_scale_img(img = ori_img.copy(),
                                                   scale_map = scale_map,
                                                   conf_thresh = model.sat_cfg['conf_thresh'],
                                                   patch_size=28)

                full_img = np.vstack([np.hstack([ori_img, mesh_img]),
                                      np.hstack([pred_scale_img, sat_img])])
                cv2.imwrite(os.path.join(imgs_save_dir, f'{img_idx}_{img_name}.jpg'), full_img)

            
            # submit
            for pnum in range(len(pred_j2ds)):
                smpl_dict = {}
                # smpl_dict['age'] = 'kid'
                smpl_dict['joints'] = pred_j2ds[pnum].reshape(24,2)
                smpl_dict['params'] = {'transl': np.zeros((1,3)),
                                        'betas': pred_betas[pnum].reshape(1,10),
                                        'global_orient': pred_poses[pnum][:3].reshape(1,1,3),
                                        'body_pose': pred_poses[pnum][3:].reshape(1,23,3)}
                # smpl_dict['verts'] = pred_verts[pnum].reshape(6890,3)
                # smpl_dict['allSmplJoints3d'] = pred_j3ds[pnum].reshape(24,3)
                with open(os.path.join(results_save_path,'predictions',f'{img_name}_personId_{pnum}.pkl'), 'wb') as f:
                    pickle.dump(smpl_dict, f)
 
        progress_bar.update(1)

    accelerator.print('Packing...')

    folder_path = os.path.join(results_save_path,'predictions')
    now = datetime.datetime.now()
    timestamp = now.strftime("%Y%m%d_%H%M%S")
    output_path = os.path.join(results_save_path,f'pred_{timestamp}.zip')
    with zipfile.ZipFile(output_path, 'w', zipfile.ZIP_DEFLATED) as zipf:
        for root, dirs, files in os.walk(folder_path):
            for file in files:
                file_path = os.path.join(root, file)
                arcname = os.path.relpath(file_path, os.path.dirname(folder_path))
                zipf.write(file_path, arcname)


    return 'Results saved at: ' + os.path.join(results_save_path,'predictions')