Cheselle commited on
Commit
e675356
·
verified ·
1 Parent(s): b00bac6

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,731 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Snowflake/snowflake-arctic-embed-m
3
+ library_name: sentence-transformers
4
+ metrics:
5
+ - cosine_accuracy@1
6
+ - cosine_accuracy@3
7
+ - cosine_accuracy@5
8
+ - cosine_accuracy@10
9
+ - cosine_precision@1
10
+ - cosine_precision@3
11
+ - cosine_precision@5
12
+ - cosine_precision@10
13
+ - cosine_recall@1
14
+ - cosine_recall@3
15
+ - cosine_recall@5
16
+ - cosine_recall@10
17
+ - cosine_ndcg@10
18
+ - cosine_mrr@10
19
+ - cosine_map@100
20
+ - dot_accuracy@1
21
+ - dot_accuracy@3
22
+ - dot_accuracy@5
23
+ - dot_accuracy@10
24
+ - dot_precision@1
25
+ - dot_precision@3
26
+ - dot_precision@5
27
+ - dot_precision@10
28
+ - dot_recall@1
29
+ - dot_recall@3
30
+ - dot_recall@5
31
+ - dot_recall@10
32
+ - dot_ndcg@10
33
+ - dot_mrr@10
34
+ - dot_map@100
35
+ pipeline_tag: sentence-similarity
36
+ tags:
37
+ - sentence-transformers
38
+ - sentence-similarity
39
+ - feature-extraction
40
+ - generated_from_trainer
41
+ - dataset_size:600
42
+ - loss:MatryoshkaLoss
43
+ - loss:MultipleNegativesRankingLoss
44
+ widget:
45
+ - source_sentence: What are the existing regulatory safety requirements mentioned
46
+ in the context for medical devices?
47
+ sentences:
48
+ - "47 \nAppendix A. Primary GAI Considerations \nThe following primary considerations\
49
+ \ were derived as overarching themes from the GAI PWG \nconsultation process.\
50
+ \ These considerations (Governance, Pre-Deployment Testing, Content Provenance,\
51
+ \ \nand Incident Disclosure) are relevant for voluntary use by any organization\
52
+ \ designing, developing, and \nusing GAI and also inform the Actions to Manage\
53
+ \ GAI risks. Information included about the primary \nconsiderations is not exhaustive,\
54
+ \ but highlights the most relevant topics derived from the GAI PWG. \nAcknowledgments:\
55
+ \ These considerations could not have been surfaced without the helpful analysis\
56
+ \ and \ncontributions from the community and NIST staff GAI PWG leads: George Awad,\
57
+ \ Luca Belli, Harold Booth, \nMat Heyman, Yooyoung Lee, Mark Pryzbocki, Reva Schwartz,\
58
+ \ Martin Stanley, and Kyra Yee. \nA.1. Governance \nA.1.1. Overview \nLike any\
59
+ \ other technology system, governance principles and techniques can be used to\
60
+ \ manage risks"
61
+ - "behavior or outcomes of a GAI model or system, how they could occur, and stress\
62
+ \ test safeguards”. AI \nred-teaming can be performed before or after AI models\
63
+ \ or systems are made available to the broader \npublic; this section focuses\
64
+ \ on red-teaming in pre-deployment contexts. \nThe quality of AI red-teaming\
65
+ \ outputs is related to the background and expertise of the AI red team \nitself.\
66
+ \ Demographically and interdisciplinarily diverse AI red teams can be used to\
67
+ \ identify flaws in the \nvarying contexts where GAI will be used. For best results,\
68
+ \ AI red teams should demonstrate domain \nexpertise, and awareness of socio-cultural\
69
+ \ aspects within the deployment context. AI red-teaming results \nshould be given\
70
+ \ additional analysis before they are incorporated into organizational governance\
71
+ \ and \ndecision making, policy and procedural updates, and AI risk management\
72
+ \ efforts. \nVarious types of AI red-teaming may be appropriate, depending on the\
73
+ \ use case: \n•"
74
+ - "SECTION TITLE\n \n \n \n \n \n \nApplying The Blueprint for an AI Bill of Rights\
75
+ \ \nRELATIONSHIP TO EXISTING LAW AND POLICY\nThere are regulatory safety requirements\
76
+ \ for medical devices, as well as sector-, population-, or technology-spe­\ncific\
77
+ \ privacy and security protections. Ensuring some of the additional protections\
78
+ \ proposed in this framework \nwould require new laws to be enacted or new policies\
79
+ \ and practices to be adopted. In some cases, exceptions to \nthe principles described\
80
+ \ in the Blueprint for an AI Bill of Rights may be necessary to comply with existing\
81
+ \ law, \nconform to the practicalities of a specific use case, or balance competing\
82
+ \ public interests. In particular, law \nenforcement, and other regulatory contexts\
83
+ \ may require government actors to protect civil rights, civil liberties, \nand\
84
+ \ privacy in a manner consistent with, but using alternate mechanisms to, the\
85
+ \ specific principles discussed in"
86
+ - source_sentence: What steps should be taken to adapt processes based on findings
87
+ from incidents involving harmful content generation?
88
+ sentences:
89
+ - "some cases may include personal data. The use of personal data for GAI training\
90
+ \ raises risks to widely \naccepted privacy principles, including to transparency,\
91
+ \ individual participation (including consent), and \npurpose specification. For\
92
+ \ example, most model developers do not disclose specific data sources on \nwhich\
93
+ \ models were trained, limiting user awareness of whether personally identifiably\
94
+ \ information (PII) \nwas trained on and, if so, how it was collected. \nModels\
95
+ \ may leak, generate, or correctly infer sensitive information about individuals.\
96
+ \ For example, \nduring adversarial attacks, LLMs have revealed sensitive information\
97
+ \ (from the public domain) that was \nincluded in their training data. This problem\
98
+ \ has been referred to as data memorization, and may pose \nexacerbated privacy\
99
+ \ risks even for data present only in a small number of training samples. \n\
100
+ In addition to revealing sensitive information in GAI training data, GAI models\
101
+ \ may be able to correctly"
102
+ - "performance, feedback received, and improvements made. \nHarmful Bias and Homogenization\
103
+ \ \nMG-4.2-002 \nPractice and follow incident response plans for addressing the\
104
+ \ generation of \ninappropriate or harmful content and adapt processes based on\
105
+ \ findings to \nprevent future occurrences. Conduct post-mortem analyses of incidents\
106
+ \ with \nrelevant AI Actors, to understand the root causes and implement preventive\
107
+ \ \nmeasures. \nHuman-AI Configuration; \nDangerous, Violent, or Hateful \nContent\
108
+ \ \nMG-4.2-003 Use visualizations or other methods to represent GAI model behavior\
109
+ \ to ease \nnon-technical stakeholders understanding of GAI system functionality.\
110
+ \ \nHuman-AI Configuration \nAI Actor Tasks: AI Deployment, AI Design, AI Development,\
111
+ \ Affected Individuals and Communities, End-Users, Operation and \nMonitoring,\
112
+ \ TEVV \n \nMANAGE 4.3: Incidents and errors are communicated to relevant AI Actors,\
113
+ \ including affected communities. Processes for tracking,"
114
+ - "AI Actor Tasks: AI Deployment, AI Design, AI Impact Assessment, Affected Individuals\
115
+ \ and Communities, Domain Experts, End-\nUsers, Human Factors, Operation and Monitoring\
116
+ \ \n \nMEASURE 1.1: Approaches and metrics for measurement of AI risks enumerated\
117
+ \ during the MAP function are selected for \nimplementation starting with the\
118
+ \ most significant AI risks. The risks or trustworthiness characteristics that\
119
+ \ will not – or cannot – be \nmeasured are properly documented. \nAction ID \n\
120
+ Suggested Action \nGAI Risks \nMS-1.1-001 Employ methods to trace the origin and\
121
+ \ modifications of digital content. \nInformation Integrity \nMS-1.1-002 \nIntegrate\
122
+ \ tools designed to analyze content provenance and detect data \nanomalies, verify\
123
+ \ the authenticity of digital signatures, and identify patterns \nassociated with\
124
+ \ misinformation or manipulation. \nInformation Integrity \nMS-1.1-003 \nDisaggregate\
125
+ \ evaluation metrics by demographic factors to identify any"
126
+ - source_sentence: What are the Principles of Artificial Intelligence Ethics developed
127
+ by the US Intelligence Community intended to guide?
128
+ sentences:
129
+ - "Evaluation data; Ethical considerations; Legal and regulatory requirements. \n\
130
+ Information Integrity; Harmful Bias \nand Homogenization \nAI Actor Tasks: AI\
131
+ \ Deployment, AI Impact Assessment, Domain Experts, End-Users, Operation and Monitoring,\
132
+ \ TEVV \n \nMEASURE 2.10: Privacy risk of the AI system – as identified in the\
133
+ \ MAP function – is examined and documented. \nAction ID \nSuggested Action \n\
134
+ GAI Risks \nMS-2.10-001 \nConduct AI red-teaming to assess issues such as: Outputting\
135
+ \ of training data \nsamples, and subsequent reverse engineering, model extraction,\
136
+ \ and \nmembership inference risks; Revealing biometric, confidential, copyrighted,\
137
+ \ \nlicensed, patented, personal, proprietary, sensitive, or trade-marked information;\
138
+ \ \nTracking or revealing location information of users or members of training\
139
+ \ \ndatasets. \nHuman-AI Configuration; \nInformation Integrity; Intellectual \n\
140
+ Property \nMS-2.10-002 \nEngage directly with end-users and other stakeholders\
141
+ \ to understand their"
142
+ - "8 \nTrustworthy AI Characteristics: Accountable and Transparent, Privacy Enhanced,\
143
+ \ Safe, Secure and \nResilient \n2.5. Environmental Impacts \nTraining, maintaining,\
144
+ \ and operating (running inference on) GAI systems are resource-intensive activities,\
145
+ \ \nwith potentially large energy and environmental footprints. Energy and carbon\
146
+ \ emissions vary based on \nwhat is being done with the GAI model (i.e., pre-training,\
147
+ \ fine-tuning, inference), the modality of the \ncontent, hardware used, and type\
148
+ \ of task or application. \nCurrent estimates suggest that training a single transformer\
149
+ \ LLM can emit as much carbon as 300 round-\ntrip flights between San Francisco\
150
+ \ and New York. In a study comparing energy consumption and carbon \nemissions\
151
+ \ for LLM inference, generative tasks (e.g., text summarization) were found to\
152
+ \ be more energy- \nand carbon-intensive than discriminative or non-generative\
153
+ \ tasks (e.g., text classification)."
154
+ - "security and defense activities.21 Similarly, the U.S. Intelligence Community\
155
+ \ (IC) has developed the Principles \nof Artificial Intelligence Ethics for the\
156
+ \ Intelligence Community to guide personnel on whether and how to \ndevelop and\
157
+ \ use AI in furtherance of the IC's mission, as well as an AI Ethics Framework\
158
+ \ to help implement \nthese principles.22\nThe National Science Foundation (NSF)\
159
+ \ funds extensive research to help foster the \ndevelopment of automated systems\
160
+ \ that adhere to and advance their safety, security and \neffectiveness. Multiple\
161
+ \ NSF programs support research that directly addresses many of these principles:\
162
+ \ \nthe National AI Research Institutes23 support research on all aspects of safe,\
163
+ \ trustworthy, fair, and explainable \nAI algorithms and systems; the Cyber Physical\
164
+ \ Systems24 program supports research on developing safe \nautonomous and cyber\
165
+ \ physical systems with AI components; the Secure and Trustworthy Cyberspace25"
166
+ - source_sentence: How does Hagan (2024) propose to establish quality standards for
167
+ AI responses to legal problems?
168
+ sentences:
169
+ - "actually occurring, or large-scale risks could occur); and broad GAI negative\
170
+ \ risks, \nincluding: Immature safety or risk cultures related to AI and GAI design,\
171
+ \ \ndevelopment and deployment, public information integrity risks, including\
172
+ \ impacts \non democratic processes, unknown long-term performance characteristics\
173
+ \ of GAI. \nInformation Integrity; Dangerous, \nViolent, or Hateful Content; CBRN\
174
+ \ \nInformation or Capabilities \nGV-1.3-007 Devise a plan to halt development\
175
+ \ or deployment of a GAI system that poses \nunacceptable negative risk. \nCBRN\
176
+ \ Information and Capability; \nInformation Security; Information \nIntegrity\
177
+ \ \nAI Actor Tasks: Governance and Oversight \n \nGOVERN 1.4: The risk management\
178
+ \ process and its outcomes are established through transparent policies, procedures,\
179
+ \ and other \ncontrols based on organizational risk priorities. \nAction ID \n\
180
+ Suggested Action \nGAI Risks \nGV-1.4-001 \nEstablish policies and mechanisms\
181
+ \ to prevent GAI systems from generating"
182
+ - "gists, advocates, journalists, policymakers, and communities in the United States\
183
+ \ and around the world. This \ntechnical companion is intended to be used as a\
184
+ \ reference by people across many circumstances – anyone \nimpacted by automated\
185
+ \ systems, and anyone developing, designing, deploying, evaluating, or making\
186
+ \ policy to \ngovern the use of an automated system. \nEach principle is accompanied\
187
+ \ by three supplemental sections: \n1\n2\nWHY THIS PRINCIPLE IS IMPORTANT: \n\
188
+ This section provides a brief summary of the problems that the principle seeks\
189
+ \ to address and protect against, including \nillustrative examples. \nWHAT SHOULD\
190
+ \ BE EXPECTED OF AUTOMATED SYSTEMS: \n• The expectations for automated systems\
191
+ \ are meant to serve as a blueprint for the development of additional technical\n\
192
+ standards and practices that should be tailored for particular sectors and contexts.\n\
193
+ • This section outlines practical steps that can be implemented to realize the\
194
+ \ vision of the Blueprint for an AI Bill of Rights. The"
195
+ - "Greshake, K. et al. (2023) Not what you've signed up for: Compromising Real-World\
196
+ \ LLM-Integrated \nApplications with Indirect Prompt Injection. arXiv. https://arxiv.org/abs/2302.12173\
197
+ \ \nHagan, M. (2024) Good AI Legal Help, Bad AI Legal Help: Establishing quality\
198
+ \ standards for responses to \npeople’s legal problem stories. SSRN. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4696936\
199
+ \ \nHaran, R. (2023) Securing LLM Systems Against Prompt Injection. NVIDIA. \n\
200
+ https://developer.nvidia.com/blog/securing-llm-systems-against-prompt-injection/\
201
+ \ \nInformation Technology Industry Council (2024) Authenticating AI-Generated\
202
+ \ Content. \nhttps://www.itic.org/policy/ITI_AIContentAuthorizationPolicy_122123.pdf\
203
+ \ \nJain, S. et al. (2023) Algorithmic Pluralism: A Structural Approach To Equal\
204
+ \ Opportunity. arXiv. \nhttps://arxiv.org/pdf/2305.08157 \nJi, Z. et al (2023)\
205
+ \ Survey of Hallucination in Natural Language Generation. ACM Comput. Surv. 55,\
206
+ \ 12, \nArticle 248. https://doi.org/10.1145/3571730"
207
+ - source_sentence: How can information security measures be applied to maintain the
208
+ integrity and confidentiality of GAI models and systems?
209
+ sentences:
210
+ - "using: field testing with sub-group populations to determine likelihood of \n\
211
+ exposure to generated content exhibiting harmful bias, AI red-teaming with \n\
212
+ counterfactual and low-context (e.g., “leader,” “bad guys”) prompts. For ML \n\
213
+ pipelines or business processes with categorical or numeric outcomes that rely\
214
+ \ \non GAI, apply general fairness metrics (e.g., demographic parity, equalized\
215
+ \ odds, \nequal opportunity, statistical hypothesis tests), to the pipeline or\
216
+ \ business \noutcome where appropriate; Custom, context-specific metrics developed\
217
+ \ in \ncollaboration with domain experts and affected communities; Measurements\
218
+ \ of \nthe prevalence of denigration in generated content in deployment (e.g.,\
219
+ \ sub-\nsampling a fraction of traffic and manually annotating denigrating content).\
220
+ \ \nHarmful Bias and Homogenization; \nDangerous, Violent, or Hateful \nContent\
221
+ \ \nMS-2.11-003 \nIdentify the classes of individuals, groups, or environmental\
222
+ \ ecosystems which"
223
+ - "27 \nMP-4.1-010 \nConduct appropriate diligence on training data use to assess\
224
+ \ intellectual property, \nand privacy, risks, including to examine whether use\
225
+ \ of proprietary or sensitive \ntraining data is consistent with applicable laws.\
226
+ \ \nIntellectual Property; Data Privacy \nAI Actor Tasks: Governance and Oversight,\
227
+ \ Operation and Monitoring, Procurement, Third-party entities \n \nMAP 5.1: Likelihood\
228
+ \ and magnitude of each identified impact (both potentially beneficial and harmful)\
229
+ \ based on expected use, past \nuses of AI systems in similar contexts, public\
230
+ \ incident reports, feedback from those external to the team that developed or\
231
+ \ deployed \nthe AI system, or other data are identified and documented. \nAction\
232
+ \ ID \nSuggested Action \nGAI Risks \nMP-5.1-001 Apply TEVV practices for content\
233
+ \ provenance (e.g., probing a system's synthetic \ndata generation capabilities\
234
+ \ for potential misuse or vulnerabilities. \nInformation Integrity; Information\
235
+ \ \nSecurity \nMP-5.1-002"
236
+ - "vulnerabilities in systems (hardware, software, data) and write code to exploit\
237
+ \ them. Sophisticated threat \nactors might further these risks by developing\
238
+ \ GAI-powered security co-pilots for use in several parts of \nthe attack chain,\
239
+ \ including informing attackers on how to proactively evade threat detection and\
240
+ \ escalate \nprivileges after gaining system access. \nInformation security for\
241
+ \ GAI models and systems also includes maintaining availability of the GAI system\
242
+ \ \nand the integrity and (when applicable) the confidentiality of the GAI code,\
243
+ \ training data, and model \nweights. To identify and secure potential attack\
244
+ \ points in AI systems or specific components of the AI \n \n \n12 See also https://doi.org/10.6028/NIST.AI.100-4,\
245
+ \ to be published."
246
+ model-index:
247
+ - name: SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
248
+ results:
249
+ - task:
250
+ type: information-retrieval
251
+ name: Information Retrieval
252
+ dataset:
253
+ name: Unknown
254
+ type: unknown
255
+ metrics:
256
+ - type: cosine_accuracy@1
257
+ value: 0.81
258
+ name: Cosine Accuracy@1
259
+ - type: cosine_accuracy@3
260
+ value: 0.96
261
+ name: Cosine Accuracy@3
262
+ - type: cosine_accuracy@5
263
+ value: 0.99
264
+ name: Cosine Accuracy@5
265
+ - type: cosine_accuracy@10
266
+ value: 1.0
267
+ name: Cosine Accuracy@10
268
+ - type: cosine_precision@1
269
+ value: 0.81
270
+ name: Cosine Precision@1
271
+ - type: cosine_precision@3
272
+ value: 0.31999999999999995
273
+ name: Cosine Precision@3
274
+ - type: cosine_precision@5
275
+ value: 0.19799999999999998
276
+ name: Cosine Precision@5
277
+ - type: cosine_precision@10
278
+ value: 0.09999999999999998
279
+ name: Cosine Precision@10
280
+ - type: cosine_recall@1
281
+ value: 0.81
282
+ name: Cosine Recall@1
283
+ - type: cosine_recall@3
284
+ value: 0.96
285
+ name: Cosine Recall@3
286
+ - type: cosine_recall@5
287
+ value: 0.99
288
+ name: Cosine Recall@5
289
+ - type: cosine_recall@10
290
+ value: 1.0
291
+ name: Cosine Recall@10
292
+ - type: cosine_ndcg@10
293
+ value: 0.9167865159386339
294
+ name: Cosine Ndcg@10
295
+ - type: cosine_mrr@10
296
+ value: 0.8887499999999998
297
+ name: Cosine Mrr@10
298
+ - type: cosine_map@100
299
+ value: 0.8887499999999998
300
+ name: Cosine Map@100
301
+ - type: dot_accuracy@1
302
+ value: 0.81
303
+ name: Dot Accuracy@1
304
+ - type: dot_accuracy@3
305
+ value: 0.96
306
+ name: Dot Accuracy@3
307
+ - type: dot_accuracy@5
308
+ value: 0.99
309
+ name: Dot Accuracy@5
310
+ - type: dot_accuracy@10
311
+ value: 1.0
312
+ name: Dot Accuracy@10
313
+ - type: dot_precision@1
314
+ value: 0.81
315
+ name: Dot Precision@1
316
+ - type: dot_precision@3
317
+ value: 0.31999999999999995
318
+ name: Dot Precision@3
319
+ - type: dot_precision@5
320
+ value: 0.19799999999999998
321
+ name: Dot Precision@5
322
+ - type: dot_precision@10
323
+ value: 0.09999999999999998
324
+ name: Dot Precision@10
325
+ - type: dot_recall@1
326
+ value: 0.81
327
+ name: Dot Recall@1
328
+ - type: dot_recall@3
329
+ value: 0.96
330
+ name: Dot Recall@3
331
+ - type: dot_recall@5
332
+ value: 0.99
333
+ name: Dot Recall@5
334
+ - type: dot_recall@10
335
+ value: 1.0
336
+ name: Dot Recall@10
337
+ - type: dot_ndcg@10
338
+ value: 0.9167865159386339
339
+ name: Dot Ndcg@10
340
+ - type: dot_mrr@10
341
+ value: 0.8887499999999998
342
+ name: Dot Mrr@10
343
+ - type: dot_map@100
344
+ value: 0.8887499999999998
345
+ name: Dot Map@100
346
+ ---
347
+
348
+ # SentenceTransformer based on Snowflake/snowflake-arctic-embed-m
349
+
350
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
351
+
352
+ ## Model Details
353
+
354
+ ### Model Description
355
+ - **Model Type:** Sentence Transformer
356
+ - **Base model:** [Snowflake/snowflake-arctic-embed-m](https://huggingface.co/Snowflake/snowflake-arctic-embed-m) <!-- at revision e2b128b9fa60c82b4585512b33e1544224ffff42 -->
357
+ - **Maximum Sequence Length:** 512 tokens
358
+ - **Output Dimensionality:** 768 tokens
359
+ - **Similarity Function:** Cosine Similarity
360
+ <!-- - **Training Dataset:** Unknown -->
361
+ <!-- - **Language:** Unknown -->
362
+ <!-- - **License:** Unknown -->
363
+
364
+ ### Model Sources
365
+
366
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
367
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
368
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
369
+
370
+ ### Full Model Architecture
371
+
372
+ ```
373
+ SentenceTransformer(
374
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
375
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
376
+ (2): Normalize()
377
+ )
378
+ ```
379
+
380
+ ## Usage
381
+
382
+ ### Direct Usage (Sentence Transformers)
383
+
384
+ First install the Sentence Transformers library:
385
+
386
+ ```bash
387
+ pip install -U sentence-transformers
388
+ ```
389
+
390
+ Then you can load this model and run inference.
391
+ ```python
392
+ from sentence_transformers import SentenceTransformer
393
+
394
+ # Download from the 🤗 Hub
395
+ model = SentenceTransformer("Cheselle/finetuned-arctic")
396
+ # Run inference
397
+ sentences = [
398
+ 'How can information security measures be applied to maintain the integrity and confidentiality of GAI models and systems?',
399
+ 'vulnerabilities in systems (hardware, software, data) and write code to exploit them. Sophisticated threat \nactors might further these risks by developing GAI-powered security co-pilots for use in several parts of \nthe attack chain, including informing attackers on how to proactively evade threat detection and escalate \nprivileges after gaining system access. \nInformation security for GAI models and systems also includes maintaining availability of the GAI system \nand the integrity and (when applicable) the confidentiality of the GAI code, training data, and model \nweights. To identify and secure potential attack points in AI systems or specific components of the AI \n \n \n12 See also https://doi.org/10.6028/NIST.AI.100-4, to be published.',
400
+ "27 \nMP-4.1-010 \nConduct appropriate diligence on training data use to assess intellectual property, \nand privacy, risks, including to examine whether use of proprietary or sensitive \ntraining data is consistent with applicable laws. \nIntellectual Property; Data Privacy \nAI Actor Tasks: Governance and Oversight, Operation and Monitoring, Procurement, Third-party entities \n \nMAP 5.1: Likelihood and magnitude of each identified impact (both potentially beneficial and harmful) based on expected use, past \nuses of AI systems in similar contexts, public incident reports, feedback from those external to the team that developed or deployed \nthe AI system, or other data are identified and documented. \nAction ID \nSuggested Action \nGAI Risks \nMP-5.1-001 Apply TEVV practices for content provenance (e.g., probing a system's synthetic \ndata generation capabilities for potential misuse or vulnerabilities. \nInformation Integrity; Information \nSecurity \nMP-5.1-002",
401
+ ]
402
+ embeddings = model.encode(sentences)
403
+ print(embeddings.shape)
404
+ # [3, 768]
405
+
406
+ # Get the similarity scores for the embeddings
407
+ similarities = model.similarity(embeddings, embeddings)
408
+ print(similarities.shape)
409
+ # [3, 3]
410
+ ```
411
+
412
+ <!--
413
+ ### Direct Usage (Transformers)
414
+
415
+ <details><summary>Click to see the direct usage in Transformers</summary>
416
+
417
+ </details>
418
+ -->
419
+
420
+ <!--
421
+ ### Downstream Usage (Sentence Transformers)
422
+
423
+ You can finetune this model on your own dataset.
424
+
425
+ <details><summary>Click to expand</summary>
426
+
427
+ </details>
428
+ -->
429
+
430
+ <!--
431
+ ### Out-of-Scope Use
432
+
433
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
434
+ -->
435
+
436
+ ## Evaluation
437
+
438
+ ### Metrics
439
+
440
+ #### Information Retrieval
441
+
442
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
443
+
444
+ | Metric | Value |
445
+ |:--------------------|:-----------|
446
+ | cosine_accuracy@1 | 0.81 |
447
+ | cosine_accuracy@3 | 0.96 |
448
+ | cosine_accuracy@5 | 0.99 |
449
+ | cosine_accuracy@10 | 1.0 |
450
+ | cosine_precision@1 | 0.81 |
451
+ | cosine_precision@3 | 0.32 |
452
+ | cosine_precision@5 | 0.198 |
453
+ | cosine_precision@10 | 0.1 |
454
+ | cosine_recall@1 | 0.81 |
455
+ | cosine_recall@3 | 0.96 |
456
+ | cosine_recall@5 | 0.99 |
457
+ | cosine_recall@10 | 1.0 |
458
+ | cosine_ndcg@10 | 0.9168 |
459
+ | cosine_mrr@10 | 0.8887 |
460
+ | **cosine_map@100** | **0.8887** |
461
+ | dot_accuracy@1 | 0.81 |
462
+ | dot_accuracy@3 | 0.96 |
463
+ | dot_accuracy@5 | 0.99 |
464
+ | dot_accuracy@10 | 1.0 |
465
+ | dot_precision@1 | 0.81 |
466
+ | dot_precision@3 | 0.32 |
467
+ | dot_precision@5 | 0.198 |
468
+ | dot_precision@10 | 0.1 |
469
+ | dot_recall@1 | 0.81 |
470
+ | dot_recall@3 | 0.96 |
471
+ | dot_recall@5 | 0.99 |
472
+ | dot_recall@10 | 1.0 |
473
+ | dot_ndcg@10 | 0.9168 |
474
+ | dot_mrr@10 | 0.8887 |
475
+ | dot_map@100 | 0.8887 |
476
+
477
+ <!--
478
+ ## Bias, Risks and Limitations
479
+
480
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
481
+ -->
482
+
483
+ <!--
484
+ ### Recommendations
485
+
486
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
487
+ -->
488
+
489
+ ## Training Details
490
+
491
+ ### Training Dataset
492
+
493
+ #### Unnamed Dataset
494
+
495
+
496
+ * Size: 600 training samples
497
+ * Columns: <code>sentence_0</code> and <code>sentence_1</code>
498
+ * Approximate statistics based on the first 600 samples:
499
+ | | sentence_0 | sentence_1 |
500
+ |:--------|:-----------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|
501
+ | type | string | string |
502
+ | details | <ul><li>min: 12 tokens</li><li>mean: 21.75 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 21 tokens</li><li>mean: 177.81 tokens</li><li>max: 512 tokens</li></ul> |
503
+ * Samples:
504
+ | sentence_0 | sentence_1 |
505
+ |:-------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
506
+ | <code>What is the title of the publication related to Artificial Intelligence Risk Management by NIST?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
507
+ | <code>Where can the NIST AI 600-1 publication be accessed for free?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1</code> |
508
+ | <code>What is the title of the publication released by NIST in July 2024 regarding artificial intelligence?</code> | <code>NIST Trustworthy and Responsible AI <br>NIST AI 600-1 <br>Artificial Intelligence Risk Management <br>Framework: Generative Artificial <br>Intelligence Profile <br> <br> <br> <br>This publication is available free of charge from: <br>https://doi.org/10.6028/NIST.AI.600-1 <br> <br>July 2024 <br> <br> <br> <br> <br>U.S. Department of Commerce <br>Gina M. Raimondo, Secretary <br>National Institute of Standards and Technology <br>Laurie E. Locascio, NIST Director and Under Secretary of Commerce for Standards and Technology</code> |
509
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
510
+ ```json
511
+ {
512
+ "loss": "MultipleNegativesRankingLoss",
513
+ "matryoshka_dims": [
514
+ 768,
515
+ 512,
516
+ 256,
517
+ 128,
518
+ 64
519
+ ],
520
+ "matryoshka_weights": [
521
+ 1,
522
+ 1,
523
+ 1,
524
+ 1,
525
+ 1
526
+ ],
527
+ "n_dims_per_step": -1
528
+ }
529
+ ```
530
+
531
+ ### Training Hyperparameters
532
+ #### Non-Default Hyperparameters
533
+
534
+ - `eval_strategy`: steps
535
+ - `per_device_train_batch_size`: 20
536
+ - `per_device_eval_batch_size`: 20
537
+ - `num_train_epochs`: 5
538
+ - `multi_dataset_batch_sampler`: round_robin
539
+
540
+ #### All Hyperparameters
541
+ <details><summary>Click to expand</summary>
542
+
543
+ - `overwrite_output_dir`: False
544
+ - `do_predict`: False
545
+ - `eval_strategy`: steps
546
+ - `prediction_loss_only`: True
547
+ - `per_device_train_batch_size`: 20
548
+ - `per_device_eval_batch_size`: 20
549
+ - `per_gpu_train_batch_size`: None
550
+ - `per_gpu_eval_batch_size`: None
551
+ - `gradient_accumulation_steps`: 1
552
+ - `eval_accumulation_steps`: None
553
+ - `torch_empty_cache_steps`: None
554
+ - `learning_rate`: 5e-05
555
+ - `weight_decay`: 0.0
556
+ - `adam_beta1`: 0.9
557
+ - `adam_beta2`: 0.999
558
+ - `adam_epsilon`: 1e-08
559
+ - `max_grad_norm`: 1
560
+ - `num_train_epochs`: 5
561
+ - `max_steps`: -1
562
+ - `lr_scheduler_type`: linear
563
+ - `lr_scheduler_kwargs`: {}
564
+ - `warmup_ratio`: 0.0
565
+ - `warmup_steps`: 0
566
+ - `log_level`: passive
567
+ - `log_level_replica`: warning
568
+ - `log_on_each_node`: True
569
+ - `logging_nan_inf_filter`: True
570
+ - `save_safetensors`: True
571
+ - `save_on_each_node`: False
572
+ - `save_only_model`: False
573
+ - `restore_callback_states_from_checkpoint`: False
574
+ - `no_cuda`: False
575
+ - `use_cpu`: False
576
+ - `use_mps_device`: False
577
+ - `seed`: 42
578
+ - `data_seed`: None
579
+ - `jit_mode_eval`: False
580
+ - `use_ipex`: False
581
+ - `bf16`: False
582
+ - `fp16`: False
583
+ - `fp16_opt_level`: O1
584
+ - `half_precision_backend`: auto
585
+ - `bf16_full_eval`: False
586
+ - `fp16_full_eval`: False
587
+ - `tf32`: None
588
+ - `local_rank`: 0
589
+ - `ddp_backend`: None
590
+ - `tpu_num_cores`: None
591
+ - `tpu_metrics_debug`: False
592
+ - `debug`: []
593
+ - `dataloader_drop_last`: False
594
+ - `dataloader_num_workers`: 0
595
+ - `dataloader_prefetch_factor`: None
596
+ - `past_index`: -1
597
+ - `disable_tqdm`: False
598
+ - `remove_unused_columns`: True
599
+ - `label_names`: None
600
+ - `load_best_model_at_end`: False
601
+ - `ignore_data_skip`: False
602
+ - `fsdp`: []
603
+ - `fsdp_min_num_params`: 0
604
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
605
+ - `fsdp_transformer_layer_cls_to_wrap`: None
606
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
607
+ - `deepspeed`: None
608
+ - `label_smoothing_factor`: 0.0
609
+ - `optim`: adamw_torch
610
+ - `optim_args`: None
611
+ - `adafactor`: False
612
+ - `group_by_length`: False
613
+ - `length_column_name`: length
614
+ - `ddp_find_unused_parameters`: None
615
+ - `ddp_bucket_cap_mb`: None
616
+ - `ddp_broadcast_buffers`: False
617
+ - `dataloader_pin_memory`: True
618
+ - `dataloader_persistent_workers`: False
619
+ - `skip_memory_metrics`: True
620
+ - `use_legacy_prediction_loop`: False
621
+ - `push_to_hub`: False
622
+ - `resume_from_checkpoint`: None
623
+ - `hub_model_id`: None
624
+ - `hub_strategy`: every_save
625
+ - `hub_private_repo`: False
626
+ - `hub_always_push`: False
627
+ - `gradient_checkpointing`: False
628
+ - `gradient_checkpointing_kwargs`: None
629
+ - `include_inputs_for_metrics`: False
630
+ - `eval_do_concat_batches`: True
631
+ - `fp16_backend`: auto
632
+ - `push_to_hub_model_id`: None
633
+ - `push_to_hub_organization`: None
634
+ - `mp_parameters`:
635
+ - `auto_find_batch_size`: False
636
+ - `full_determinism`: False
637
+ - `torchdynamo`: None
638
+ - `ray_scope`: last
639
+ - `ddp_timeout`: 1800
640
+ - `torch_compile`: False
641
+ - `torch_compile_backend`: None
642
+ - `torch_compile_mode`: None
643
+ - `dispatch_batches`: None
644
+ - `split_batches`: None
645
+ - `include_tokens_per_second`: False
646
+ - `include_num_input_tokens_seen`: False
647
+ - `neftune_noise_alpha`: None
648
+ - `optim_target_modules`: None
649
+ - `batch_eval_metrics`: False
650
+ - `eval_on_start`: False
651
+ - `eval_use_gather_object`: False
652
+ - `batch_sampler`: batch_sampler
653
+ - `multi_dataset_batch_sampler`: round_robin
654
+
655
+ </details>
656
+
657
+ ### Training Logs
658
+ | Epoch | Step | cosine_map@100 |
659
+ |:------:|:----:|:--------------:|
660
+ | 1.0 | 30 | 0.8699 |
661
+ | 1.6667 | 50 | 0.8879 |
662
+ | 2.0 | 60 | 0.8887 |
663
+
664
+
665
+ ### Framework Versions
666
+ - Python: 3.10.12
667
+ - Sentence Transformers: 3.1.1
668
+ - Transformers: 4.44.2
669
+ - PyTorch: 2.4.1+cu121
670
+ - Accelerate: 0.34.2
671
+ - Datasets: 3.0.0
672
+ - Tokenizers: 0.19.1
673
+
674
+ ## Citation
675
+
676
+ ### BibTeX
677
+
678
+ #### Sentence Transformers
679
+ ```bibtex
680
+ @inproceedings{reimers-2019-sentence-bert,
681
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
682
+ author = "Reimers, Nils and Gurevych, Iryna",
683
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
684
+ month = "11",
685
+ year = "2019",
686
+ publisher = "Association for Computational Linguistics",
687
+ url = "https://arxiv.org/abs/1908.10084",
688
+ }
689
+ ```
690
+
691
+ #### MatryoshkaLoss
692
+ ```bibtex
693
+ @misc{kusupati2024matryoshka,
694
+ title={Matryoshka Representation Learning},
695
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
696
+ year={2024},
697
+ eprint={2205.13147},
698
+ archivePrefix={arXiv},
699
+ primaryClass={cs.LG}
700
+ }
701
+ ```
702
+
703
+ #### MultipleNegativesRankingLoss
704
+ ```bibtex
705
+ @misc{henderson2017efficient,
706
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
707
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
708
+ year={2017},
709
+ eprint={1705.00652},
710
+ archivePrefix={arXiv},
711
+ primaryClass={cs.CL}
712
+ }
713
+ ```
714
+
715
+ <!--
716
+ ## Glossary
717
+
718
+ *Clearly define terms in order to be accessible across audiences.*
719
+ -->
720
+
721
+ <!--
722
+ ## Model Card Authors
723
+
724
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
725
+ -->
726
+
727
+ <!--
728
+ ## Model Card Contact
729
+
730
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
731
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "finetuned_arctic",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.4.1+cu121"
6
+ },
7
+ "prompts": {
8
+ "query": "Represent this sentence for searching relevant passages: "
9
+ },
10
+ "default_prompt_name": null,
11
+ "similarity_fn_name": null
12
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c0c85a3ab8fa0fa0be76b760663e9f8e229e66434d7b514d3bd834104e91d650
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "mask_token": "[MASK]",
48
+ "max_length": 512,
49
+ "model_max_length": 512,
50
+ "pad_to_multiple_of": null,
51
+ "pad_token": "[PAD]",
52
+ "pad_token_type_id": 0,
53
+ "padding_side": "right",
54
+ "sep_token": "[SEP]",
55
+ "stride": 0,
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "BertTokenizer",
59
+ "truncation_side": "right",
60
+ "truncation_strategy": "longest_first",
61
+ "unk_token": "[UNK]"
62
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff