sgoel30 commited on
Commit
82a62fa
·
verified ·
1 Parent(s): d061944

Delete scripts

Browse files
scripts/diffusion.py DELETED
@@ -1,264 +0,0 @@
1
- import itertools
2
- import math
3
- import torch
4
- import torch.nn as nn
5
- import numpy as np
6
- import pytorch_lightning as L
7
- import torchmetrics
8
- from dataclasses import dataclass
9
- from esm_utils import load_esm2_model
10
- from transformers import AutoModelForMaskedLM, AutoModel, AutoTokenizer
11
- import dit, ema
12
- import sys
13
- import config
14
- import wandb
15
- import noise_schedule # Assuming this is part of the MDLM repository
16
-
17
- wandb_key = "2b76a2fa2c1cdfddc5f443602c17b011fefb0a8f"
18
- wandb.login(key=wandb_key)
19
- wandb.init(project=config.Wandb.PROJECT, group=config.Wandb.GROUP)
20
-
21
- LOG2 = math.log(2)
22
-
23
- # Goal is to build an MDLM head using pre-existing ESM LM head
24
- # Wrap the ESM model to obtain logits and ignore sigma to work with MDLM codebase
25
- class WrapESM(nn.Module):
26
- def __init__(self, esm_model_path=config.MODEL_NAME):
27
- super(WrapESM, self).__init__()
28
- self.model = AutoModelForMaskedLM.from_pretrained(esm_model_path)
29
- self.tokenizer = AutoTokenizer.from_pretrained(esm_model_path)
30
-
31
- # def __getattr__(self, name):
32
- # return getattr(self.model, name)
33
-
34
- def __call__(self, *args, **kwargs):
35
- return self.model(*args, **kwargs)
36
-
37
- def freeze_model(self):
38
- # Disable parameter updates for all layers
39
- for param in self.model.parameters():
40
- param.requires_grad = False
41
-
42
- def unfreeze_n_layers(self):
43
- # Count number of encoder layers
44
- model_layers = len(self.model.esm.encoder.layer)
45
-
46
- # Enable parameter updates for the last 3 encoder layers
47
- for i, layer in enumerate(self.model.esm.encoder.layer):
48
- if i >= model_layers-config.ESM_LAYERS:
49
- for module in layer.attention.self.key.modules():
50
- for param in module.parameters():
51
- param.requires_grad = True
52
- for module in layer.attention.self.query.modules():
53
- for param in module.parameters():
54
- param.requires_grad = True
55
- for module in layer.attention.self.value.modules():
56
- for param in module.parameters():
57
- param.requires_grad = True
58
-
59
- def forward(self, sigma, **inputs):
60
- return self.model(**inputs)
61
-
62
- def save_model(self, save_dir):
63
- self.model.save_pretrained(save_dir)
64
- self.tokenizer.save_pretrained(save_dir)
65
-
66
- def load_model(self, load_dir):
67
- self.model = AutoModel.from_pretrained(load_dir)
68
- self.tokenizer = AutoTokenizer.from_pretrained(load_dir)
69
-
70
- @dataclass
71
- class Loss:
72
- loss: torch.FloatTensor
73
- nlls: torch.FloatTensor
74
- token_mask: torch.FloatTensor
75
-
76
- class NLL(torchmetrics.MeanMetric):
77
- pass
78
-
79
- class BPD(NLL):
80
- def compute(self) -> torch.Tensor:
81
- """Computes the bits per dimension.
82
- Returns:
83
- bpd
84
- """
85
- return self.mean_value / self.weight / LOG2
86
-
87
- class Perplexity(NLL):
88
- def compute(self) -> torch.Tensor:
89
- """Computes the Perplexity.
90
- Returns:
91
- Perplexity
92
- """
93
- return torch.exp(self.mean_value / self.weight)
94
-
95
-
96
- # Based on MDLM repo
97
- class Diffusion(L.LightningModule):
98
- def __init__(self, config, tokenizer):
99
- super().__init__()
100
- self.config = config
101
- self.tokenizer = tokenizer
102
-
103
- self.softplus = torch.nn.Softplus()
104
- metrics = torchmetrics.MetricCollection({
105
- 'nll': NLL(),
106
- 'bpd': BPD(),
107
- 'ppl': Perplexity(),
108
- })
109
- metrics.set_dtype(torch.float64)
110
- self.train_metrics = metrics.clone(prefix='train/')
111
- self.valid_metrics = metrics.clone(prefix='val/')
112
- self.test_metrics = metrics.clone(prefix='test/')
113
-
114
- self.T = self.config.T
115
- self.lr = self.config.Optim.LR
116
- self.backbone = WrapESM(self.config.MODEL_NAME)
117
- self.noise = noise_schedule.get_noise(self.config, dtype=self.dtype)
118
- self.time_conditioning = self.config.TIME_CONDITIONING
119
- self.subs_masking = self.config.SUBS_MASKING
120
- self.mask_index = self.tokenizer.mask_token_id
121
- self.antithetic_sampling = self.config.Training.ANTITHETIC_SAMPLING
122
- self.sampling_eps = self.config.Training.SAMPLING_EPS
123
- self.neg_infinity = -1000000.0
124
-
125
-
126
- ############ FORWARD DIFFUSION #########
127
- def compute_loss(self, latents, attention_mask, val):
128
- """"Average of MLM losses to stabilize training"""
129
- self.noise.eval() if val else self.noise.train()
130
- loss = self.forward_diffusion(latents)
131
-
132
- nlls = loss * attention_mask
133
- count = attention_mask.sum()
134
- batch_nll = nlls.sum()
135
- token_nll = batch_nll / count
136
-
137
- return Loss(loss=token_nll, nlls=nlls, token_mask=attention_mask)
138
-
139
- def forward_diffusion(self, x0):
140
- """Forward diffusion process, adds noise to the latents."""
141
- t = self.sample_timestep(x0.shape[0], x0.device)
142
-
143
- sigma, dsigma = self.noise(t)
144
- unet_conditioning = sigma[:, None]
145
- move_chance = 1 - torch.exp(-sigma[:, None])
146
-
147
- xt = self.q_xt(x0, move_chance)
148
- model_output = self.forward(xt, unet_conditioning)
149
-
150
- # SUBS parameterization, continuous time.
151
- log_p_theta = torch.gather(input=model_output, dim=-1, index=x0[:, :, None]).squeeze(-1)
152
- scale = (dsigma / torch.expm1(sigma))[:, None]
153
- loss = - log_p_theta * scale
154
- return loss
155
-
156
- def sample_timestep(self, n, device):
157
- _eps_t = torch.rand(n, device=device)
158
- if self.antithetic_sampling:
159
- offset = torch.arange(n, device=device) / n
160
- _eps_t = (_eps_t / n + offset) % 1
161
- t = (1 - self.sampling_eps) * _eps_t + self.sampling_eps
162
- return t
163
-
164
- def q_xt(self, x, move_chance):
165
- """
166
- Computes the noisy sample xt.
167
- Args:
168
- x: int torch.Tensor with shape (batch_size, diffusion_model_input_length), input.
169
- move_chance: float torch.Tensor with shape (batch_size, 1).
170
- """
171
- move_indices = torch.rand(* x.shape, device=x.device) < move_chance
172
- xt = torch.where(move_indices, self.mask_index, x) # Use variable masking rate to mask tokens (introduce noise)
173
- return xt
174
-
175
- def forward(self, latents, sigma):
176
- esm_outputs = self.backbone(latents, sigma)
177
- optimized_logits = self.subs_parameterization(esm_outputs.logits, latents)
178
- return optimized_logits
179
-
180
- def subs_parameterization(self, logits, xt):
181
- logits[:, :, self.mask_index] += self.neg_infinity
182
- logits = logits - torch.logsumexp(logits, dim=-1, keepdim=True)
183
-
184
- unmasked_indices = (xt != self.mask_index)
185
- logits[unmasked_indices] = self.neg_infinity
186
- logits[unmasked_indices, xt[unmasked_indices]] = 0
187
- return logits
188
-
189
-
190
- ######### GENERATION #########
191
- def sample_prior(self, *batch_dims):
192
- return self.mask_index * torch.ones(* batch_dims, dtype=torch.int64)
193
-
194
- def sample_categorical(categorical_probs):
195
- gumbel_norm = (1e-10 - (torch.rand_like(categorical_probs) + 1e-10).log())
196
- return (categorical_probs / gumbel_norm).argmax(dim=-1)
197
-
198
- def ddpm_caching_update(self, x, t, dt, p_x0=None):
199
- sigma_t, _ = self.noise(t)
200
- if t.ndim > 1:
201
- t = t.squeeze(-1)
202
- assert t.ndim == 1
203
- move_chance_t = t[:, None, None]
204
- move_chance_s = (t - dt)[:, None, None]
205
- assert move_chance_t.ndim == 3, move_chance_t.shape
206
- if p_x0 is None:
207
- p_x0 = self.forward(x, sigma_t).exp()
208
-
209
- assert move_chance_t.ndim == p_x0.ndim
210
- q_xs = p_x0 * (move_chance_t - move_chance_s)
211
- q_xs[:, :, self.mask_index] = move_chance_s[:, :, 0]
212
- _x = self.sample_categorical(q_xs)
213
-
214
- copy_flag = (x != self.mask_index).to(x.dtype)
215
- return p_x0, copy_flag * x + (1 - copy_flag) * _x
216
-
217
-
218
- @torch.no_grad()
219
- def sample_subs_guidance(self, n_samples, stride_length, num_strides, dt=0.001):
220
- ones = torch.ones(n_samples, dtype=self.dtype,device=self.device)
221
- num_steps = int(1 / dt)
222
- sampling_steps = 0
223
- intermediate_tokens = []
224
- target = None
225
-
226
- for _ in range(num_strides + 1):
227
- p_x0_cache = None
228
- x = self.sample_prior(n_samples,self.config.model.length).to(self.device)
229
-
230
- if target is not None:
231
- x[:, : -stride_length] = target
232
-
233
- for i in range(num_steps + 1):
234
- p_x0_cache, x_next = self.ddpm_caching_update(x=x, t=(1 - i * dt) * ones, dt=dt, p_x0=p_x0_cache)
235
- if (not torch.allclose(x_next, x) or self.time_conditioning):
236
- p_x0_cache = None
237
- sampling_steps += 1
238
- x = x_next
239
- x = self.forward(x, 0 * ones).argmax(dim=-1)
240
- intermediate_tokens.append(x[:, :stride_length].cpu().numpy())
241
- target = x[:, stride_length:]
242
-
243
- intermediate_tokens.append(target.cpu().numpy())
244
- intermediate_text_samples = []
245
- sequence_lengths = ((np.concatenate(intermediate_tokens, axis=1)[:, 1:]
246
- == self.tokenizer.eos_token_id).cumsum(-1) == 0).sum(-1)
247
-
248
- for i in range(2, len(intermediate_tokens) + 1):
249
- intermediate_text_samples.append(self.tokenizer.decode(np.concatenate(intermediate_tokens[:i], axis=1)))
250
-
251
- return (sampling_steps, intermediate_text_samples,
252
- sequence_lengths)
253
-
254
- def restore_model_and_semi_ar_sample(self, stride_length, num_strides, dt=0.001):
255
- """Generate samples from the model."""
256
- # Lightning auto-casting is not working in this method for some reason
257
- self.backbone.eval()
258
- self.noise.eval()
259
-
260
- (sampling_steps, samples, sequence_lengths) = self.sample_subs_guidance(n_samples=self.config.Loader.BATCH_SIZE,stride_length=stride_length,num_strides=num_strides,dt=dt)
261
-
262
- self.backbone.train()
263
- self.noise.train()
264
- return sampling_steps, samples, sequence_lengths
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/generate.py DELETED
@@ -1,129 +0,0 @@
1
- import torch
2
- import numpy as np
3
- from transformers import AutoTokenizer, AutoModel
4
- from diffusion import Diffusion
5
- import config
6
- from esm_utils import load_esm2_model, get_latents
7
-
8
- def mask_sequence(sequence, mask_char='X'):
9
- """Masks parts of the sequence based on the mask_char."""
10
- mask_indices = [i for i, char in enumerate(sequence) if char == mask_char]
11
- masked_sequence = sequence.replace(mask_char, '[MASK]')
12
- return masked_sequence, mask_indices
13
-
14
- def generate_filled_sequence(model, tokenizer, esm_model, masked_sequence, mask_indices):
15
- """Generates the filled sequence for the masked regions."""
16
- inputs = tokenizer(masked_sequence, return_tensors="pt")
17
- with torch.no_grad():
18
- outputs = esm_model(**inputs)
19
- latents = outputs.last_hidden_state.squeeze(0)
20
-
21
- sigma = torch.rand(1, device=latents.device)
22
- noisy_latents = model.forward(latents, sigma)
23
- denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
24
-
25
- filled_sequence = list(masked_sequence)
26
- for idx in mask_indices:
27
- token_id = torch.argmax(denoised_latents[idx]).item()
28
- filled_sequence[idx] = tokenizer.decode([token_id])
29
-
30
- return ''.join(filled_sequence)
31
-
32
- def generate_scaffold_sequence(model, tokenizer, esm_model, peptides, final_length):
33
- """Generates a scaffold sequence to connect multiple peptides."""
34
- total_peptide_length = sum(len(peptide) for peptide in peptides)
35
- scaffold_length = final_length - total_peptide_length
36
- if scaffold_length <= 0:
37
- raise ValueError("Final length must be greater than the combined length of the peptides.")
38
-
39
- scaffold = "[MASK]" * scaffold_length
40
- masked_sequence = "".join(peptides[:1] + [scaffold] + peptides[1:])
41
-
42
- inputs = tokenizer(masked_sequence, return_tensors="pt")
43
- with torch.no_grad():
44
- outputs = esm_model(**inputs)
45
- latents = outputs.last_hidden_state.squeeze(0)
46
-
47
- sigma = torch.rand(1, device=latents.device)
48
- noisy_latents = model.forward(latents, sigma)
49
- denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
50
-
51
- filled_sequence = list(masked_sequence)
52
- scaffold_start = len(peptides[0])
53
- scaffold_end = scaffold_start + scaffold_length
54
- for idx in range(scaffold_start, scaffold_end):
55
- token_id = torch.argmax(denoised_latents[idx]).item()
56
- filled_sequence[idx] = tokenizer.decode([token_id])
57
-
58
- return ''.join(filled_sequence)
59
-
60
- def generate_de_novo_sequence(model, tokenizer, esm_model, sequence_length):
61
- """Generates a de novo protein sequence of the specified length."""
62
- scaffold = "[MASK]" * sequence_length
63
- masked_sequence = scaffold
64
-
65
- inputs = tokenizer(masked_sequence, return_tensors="pt")
66
- with torch.no_grad():
67
- outputs = esm_model(**inputs)
68
- latents = outputs.last_hidden_state.squeeze(0)
69
-
70
- sigma = torch.rand(1, device=latents.device)
71
- noisy_latents = model.forward(latents, sigma)
72
- denoised_latents = model.reverse_diffusion(noisy_latents, sigma)
73
-
74
- filled_sequence = list(masked_sequence)
75
- for idx in range(sequence_length):
76
- token_id = torch.argmax(denoised_latents[idx]).item()
77
- filled_sequence[idx] = tokenizer.decode([token_id])
78
-
79
- return ''.join(filled_sequence)
80
-
81
- if __name__ == "__main__":
82
- import argparse
83
-
84
- # Argument parsing
85
- parser = argparse.ArgumentParser(description="Generate protein sequences using latent diffusion model.")
86
- subparsers = parser.add_subparsers(dest="mode")
87
-
88
- # Subparser for the first strategy (multiple peptides to scaffold)
89
- parser_scaffold = subparsers.add_parser("scaffold", help="Generate scaffold to connect multiple peptides.")
90
- parser_scaffold.add_argument("peptides", nargs='+', help="Peptides to connect.")
91
- parser_scaffold.add_argument("final_length", type=int, help="Final length of the protein sequence.")
92
-
93
- # Subparser for the second strategy (fill in regions)
94
- parser_fill = subparsers.add_parser("fill", help="Fill in specified regions in a given protein sequence.")
95
- parser_fill.add_argument("sequence", help="Protein sequence with regions to fill specified by 'X'.")
96
-
97
- # Subparser for the third strategy (de novo generation)
98
- parser_de_novo = subparsers.add_parser("de_novo", help="Generate a de novo protein sequence.")
99
- parser_de_novo.add_argument("sequence_length", type=int, help="Length of the de novo generated protein sequence.")
100
-
101
- args = parser.parse_args()
102
-
103
- # Load models
104
- tokenizer, esm_model = load_esm2_model(config.MODEL_NAME)
105
- diffusion_model = Diffusion.load_from_checkpoint(config.Training.SAVE_DIR + "best_model.ckpt", config=config, latent_dim=config.LATENT_DIM)
106
- diffusion_model.eval()
107
-
108
- if args.mode == "scaffold":
109
- peptides = args.peptides
110
- final_length = args.final_length
111
- filled_sequence = generate_scaffold_sequence(diffusion_model, tokenizer, esm_model, peptides, final_length)
112
- print(f"Peptides: {' '.join(peptides)}")
113
- print(f"Final Length: {final_length}")
114
- print(f"Generated Protein: {filled_sequence}")
115
-
116
- elif args.mode == "fill":
117
- sequence = args.sequence
118
- masked_sequence, mask_indices = mask_sequence(sequence)
119
- filled_sequence = generate_filled_sequence(diffusion_model, tokenizer, esm_model, masked_sequence, mask_indices)
120
- print(f"Original Sequence: {sequence}")
121
- print(f"Masked Sequence: {masked_sequence}")
122
- print(f"Filled Sequence: {filled_sequence}")
123
-
124
- elif args.mode == "de_novo":
125
- sequence_length = args.sequence_length
126
- filled_sequence = generate_de_novo_sequence(diffusion_model, tokenizer, esm_model, sequence_length)
127
- print(f"De Novo Sequence Length: {sequence_length}")
128
- print(f"Generated Protein: {filled_sequence}")
129
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/noise_schedule.py DELETED
@@ -1,153 +0,0 @@
1
- import abc
2
-
3
- import torch
4
- import torch.nn as nn
5
-
6
- # Flags required to enable jit fusion kernels
7
- torch._C._jit_set_profiling_mode(False)
8
- torch._C._jit_set_profiling_executor(False)
9
- torch._C._jit_override_can_fuse_on_cpu(True)
10
- torch._C._jit_override_can_fuse_on_gpu(True)
11
-
12
-
13
- def get_noise(config, dtype=torch.float32):
14
- return LogLinearNoise()
15
-
16
- if config.noise.type == 'geometric':
17
- return GeometricNoise(config.noise.sigma_min,
18
- config.noise.sigma_max)
19
- elif config.noise.type == 'loglinear':
20
- return LogLinearNoise()
21
- elif config.noise.type == 'cosine':
22
- return CosineNoise()
23
- elif config.noise.type == 'cosinesqr':
24
- return CosineSqrNoise()
25
- elif config.noise.type == 'linear':
26
- return Linear(config.noise.sigma_min,
27
- config.noise.sigma_max,
28
- dtype)
29
- else:
30
- raise ValueError(f'{config.noise.type} is not a valid noise')
31
-
32
-
33
- def binary_discretization(z):
34
- z_hard = torch.sign(z)
35
- z_soft = z / torch.norm(z, dim=-1, keepdim=True)
36
- return z_soft + (z_hard - z_soft).detach()
37
-
38
-
39
- class Noise(abc.ABC, nn.Module):
40
- """
41
- Baseline forward method to get the total + rate of noise at a timestep
42
- """
43
- def forward(self, t):
44
- # Assume time goes from 0 to 1
45
- return self.total_noise(t), self.rate_noise(t)
46
-
47
- @abc.abstractmethod
48
- def rate_noise(self, t):
49
- """
50
- Rate of change of noise ie g(t)
51
- """
52
- pass
53
-
54
- @abc.abstractmethod
55
- def total_noise(self, t):
56
- """
57
- Total noise ie \int_0^t g(t) dt + g(0)
58
- """
59
- pass
60
-
61
-
62
- class CosineNoise(Noise):
63
- def __init__(self, eps=1e-3):
64
- super().__init__()
65
- self.eps = eps
66
-
67
- def rate_noise(self, t):
68
- cos = (1 - self.eps) * torch.cos(t * torch.pi / 2)
69
- sin = (1 - self.eps) * torch.sin(t * torch.pi / 2)
70
- scale = torch.pi / 2
71
- return scale * sin / (cos + self.eps)
72
-
73
- def total_noise(self, t):
74
- cos = torch.cos(t * torch.pi / 2)
75
- return - torch.log(self.eps + (1 - self.eps) * cos)
76
-
77
-
78
- class CosineSqrNoise(Noise):
79
- def __init__(self, eps=1e-3):
80
- super().__init__()
81
- self.eps = eps
82
-
83
- def rate_noise(self, t):
84
- cos = (1 - self.eps) * (
85
- torch.cos(t * torch.pi / 2) ** 2)
86
- sin = (1 - self.eps) * torch.sin(t * torch.pi)
87
- scale = torch.pi / 2
88
- return scale * sin / (cos + self.eps)
89
-
90
- def total_noise(self, t):
91
- cos = torch.cos(t * torch.pi / 2) ** 2
92
- return - torch.log(self.eps + (1 - self.eps) * cos)
93
-
94
-
95
- class Linear(Noise):
96
- def __init__(self, sigma_min=0, sigma_max=10, dtype=torch.float32):
97
- super().__init__()
98
- self.sigma_min = torch.tensor(sigma_min, dtype=dtype)
99
- self.sigma_max = torch.tensor(sigma_max, dtype=dtype)
100
-
101
- def rate_noise(self, t):
102
- return self.sigma_max - self.sigma_min
103
-
104
- def total_noise(self, t):
105
- return self.sigma_min + t * (self.sigma_max - self.sigma_min)
106
-
107
- def importance_sampling_transformation(self, t):
108
- f_T = torch.log1p(- torch.exp(- self.sigma_max))
109
- f_0 = torch.log1p(- torch.exp(- self.sigma_min))
110
- sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
111
- return (sigma_t - self.sigma_min) / (
112
- self.sigma_max - self.sigma_min)
113
-
114
-
115
- class GeometricNoise(Noise):
116
- def __init__(self, sigma_min=1e-3, sigma_max=1):
117
- super().__init__()
118
- self.sigmas = 1.0 * torch.tensor([sigma_min, sigma_max])
119
-
120
- def rate_noise(self, t):
121
- return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t * (
122
- self.sigmas[1].log() - self.sigmas[0].log())
123
-
124
- def total_noise(self, t):
125
- return self.sigmas[0] ** (1 - t) * self.sigmas[1] ** t
126
-
127
-
128
- class LogLinearNoise(Noise):
129
- """Log Linear noise schedule.
130
-
131
- Built such that 1 - 1/e^(n(t)) interpolates between 0 and
132
- ~1 when t varies from 0 to 1. Total noise is
133
- -log(1 - (1 - eps) * t), so the sigma will be
134
- (1 - eps) * t.
135
- """
136
- def __init__(self, eps=1e-3):
137
- super().__init__()
138
- self.eps = eps
139
- self.sigma_max = self.total_noise(torch.tensor(1.0))
140
- self.sigma_min = self.eps + self.total_noise(torch.tensor(0.0))
141
-
142
- def rate_noise(self, t):
143
- return (1 - self.eps) / (1 - (1 - self.eps) * t)
144
-
145
- def total_noise(self, t):
146
- return -torch.log1p(-(1 - self.eps) * t)
147
-
148
- def importance_sampling_transformation(self, t):
149
- f_T = torch.log1p(- torch.exp(- self.sigma_max))
150
- f_0 = torch.log1p(- torch.exp(- self.sigma_min))
151
- sigma_t = - torch.log1p(- torch.exp(t * f_T + (1 - t) * f_0))
152
- t = - torch.expm1(- sigma_t) / (1 - self.eps)
153
- return t
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
scripts/train_pytorch.py DELETED
@@ -1,165 +0,0 @@
1
- import torch
2
- import config
3
- import math
4
- import sys
5
- import os
6
- from tqdm import tqdm
7
- from torch.optim import AdamW
8
- from transformers import AutoTokenizer
9
- from diffusion import WrapESM, Diffusion
10
- from data_loader import get_dataloaders
11
-
12
- def save_hyperparams(ckpt_dir):
13
- hyperparms_txt_file = os.path.join(ckpt_dir, "hyperparameters.txt")
14
- with open(hyperparms_txt_file, 'w') as f:
15
- for k, v in vars(config).items():
16
- if k.isupper():
17
- f.write(f"{k}: {v}\n")
18
-
19
- def train_and_validate(model, optimizer, device, train_loader, val_loader, num_epochs, ckpt_dir):
20
- best_val_loss = float('inf')
21
-
22
- for epoch in range(num_epochs):
23
- model.train()
24
-
25
- print(f"EPOCH {epoch+1}/{num_epochs}")
26
- sys.stderr.flush()
27
- total_loss = 0.0
28
- train_tokens = 0
29
- weighted_total_train_loss = 0.0
30
-
31
- train_update_interval = len(train_loader) // 4
32
-
33
- with tqdm(enumerate(train_loader), desc="Training batch", total=len(train_loader), leave=True, position=0, ncols=100) as trainbar:
34
- for step, inputs in trainbar:
35
- inputs = {k: v.to(device) for k, v in inputs.items()}
36
- optimizer.zero_grad()
37
- outputs = model(**inputs)
38
- train_loss = diffusion_model.compute_loss(inputs["input_ids"], inputs['attention_mask'],
39
- val=False).loss
40
- train_loss.backward()
41
- optimizer.step()
42
-
43
- total_loss += train_loss.item()
44
- weighted_total_train_loss += train_loss.item() * inputs['input_ids'].shape[1] # Loss * sequence length
45
- train_tokens += inputs['input_ids'].shape[1]
46
-
47
- if (step+1) % train_update_interval == 0:
48
- trainbar.update(train_update_interval)
49
-
50
- avg_train_loss = total_loss / len(train_loader)
51
- avg_train_neg_log_likelihood = weighted_total_train_loss / train_tokens
52
- train_perplexity = math.exp(avg_train_neg_log_likelihood)
53
-
54
- # Save model every epoch
55
- train_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, f'epoch{epoch+1}')
56
- model.save_model(train_ckpt_path)
57
- save_hyperparams(train_ckpt_path)
58
-
59
- # Validate model
60
- if val_loader:
61
- model.eval()
62
- total_val_loss = 0.0
63
- weighted_total_val_loss = 0.0
64
- val_tokens = 0
65
-
66
- with torch.no_grad():
67
- val_update_interval = len(val_loader) // 4
68
-
69
- with tqdm(enumerate(val_loader), desc='Validiation batch', total=len(val_loader), leave=True, position=0) as valbar:
70
- for step, inputs in valbar:
71
- inputs = {k: v.to(device) for k, v in inputs.items()}
72
- outputs = model(**inputs)
73
- val_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
74
- val=True).loss.item()
75
-
76
- total_val_loss += val_loss
77
- weighted_total_val_loss += val_loss * inputs['input_ids'].shape[1] # Loss * sequence length
78
- val_tokens += inputs['input_ids'].shape[1]
79
-
80
- if (step+1) % val_update_interval == 0:
81
- valbar.update(val_update_interval)
82
-
83
- avg_val_loss = total_val_loss / len(val_loader)
84
- avg_val_log_likelihood = weighted_total_val_loss / val_tokens
85
- val_perplexity = math.exp(avg_val_log_likelihood)
86
-
87
- # Save the best model based on validation loss
88
- if avg_val_loss < best_val_loss:
89
- best_val_loss = avg_val_loss
90
- val_ckpt_path = os.path.join(config.Eval.CHECKPOINT_PATH, "best_model_epoch")
91
- model.save_model(val_ckpt_path)
92
- save_hyperparams(val_ckpt_path)
93
-
94
-
95
- print(f"Average train loss: {avg_train_loss}")
96
- print(f"Average train perplexity: {train_perplexity}\n")
97
- sys.stdout.flush()
98
-
99
- print(f"Average validation loss: {avg_val_loss}")
100
- print(f"Average validation perplexity: {val_perplexity}\n")
101
- sys.stdout.flush()
102
-
103
-
104
- return avg_train_loss, train_perplexity, avg_val_loss, val_perplexity
105
-
106
-
107
- def test(model, test_loader, device):
108
- model.to(device).eval()
109
- total_test_loss = 0.0
110
- weighted_total_test_loss = 0.0
111
- test_tokens = 0
112
-
113
- with torch.no_grad():
114
- for step, inputs in enumerate(test_loader):
115
- inputs = {k: v.to(device) for k, v in inputs.items()}
116
- outputs = model(**inputs)
117
- test_loss = diffusion_model.compute_loss(inputs['input_ids'], inputs['attention_mask'],
118
- val=True).loss.item()
119
-
120
- total_test_loss += test_loss
121
- weighted_total_test_loss += test_loss * inputs['input_ids'].shape[1] # loss * sequence length
122
- test_tokens += inputs['input_ids'].shape[1]
123
-
124
- avg_test_loss = total_test_loss / len(test_loader)
125
- avg_test_log_likelihood = weighted_total_test_loss / test_tokens
126
- test_perplexity = math.exp(avg_test_log_likelihood)
127
-
128
- return avg_test_loss, test_perplexity
129
-
130
-
131
- if __name__ == "__main__":
132
- device = torch.device('cuda' if torch.cuda.is_available() else "cpu")
133
- tokenizer = AutoTokenizer.from_pretrained(config.MODEL_NAME)
134
-
135
- esm_model = WrapESM()
136
- diffusion_model = Diffusion(config, tokenizer=tokenizer)
137
-
138
- print(f'Trainable params before unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
139
-
140
- esm_model.to(device)
141
- diffusion_model.to(device)
142
-
143
- esm_model.freeze_model()
144
- esm_model.unfreeze_n_layers()
145
-
146
- print(f'Trainable params after unfreezing: {sum(p.numel() for p in esm_model.parameters() if p.requires_grad)}')
147
-
148
- train_loader, val_loader, test_loader = get_dataloaders(config)
149
- optimizer = AdamW(filter(lambda p: p.requires_grad, esm_model.parameters()), lr=config.Optim.LR)
150
-
151
- # Train and test the model
152
- avg_train_loss, train_ppl, avg_val_loss, val_ppl = train_and_validate(esm_model, optimizer, device, train_loader, val_loader, config.Training.NUM_EPOCHS, config.Eval.CHECKPOINT_PATH)
153
- avg_test_loss, test_ppl = test(esm_model, test_loader, device)
154
-
155
- results_dict = {"Average train loss": avg_train_loss,
156
- "Average train perplexity": train_ppl,
157
- "Average val loss": avg_val_loss,
158
- "Average val perplexity": val_ppl,
159
- "Average test loss": avg_test_loss,
160
- "Average test perplexity": test_ppl,
161
- }
162
-
163
- print("TRAIN AND TEST RESULTS")
164
- for k, v in results_dict.items():
165
- print(f"{k}: {v}\n")