|
import pandas as pd |
|
import os |
|
import pickle |
|
from fuson_plm.data.config import SPLIT |
|
from fuson_plm.utils.logging import log_update, open_logfile |
|
from fuson_plm.utils.splitting import split_clusters, check_split_validity |
|
from fuson_plm.utils.visualizing import set_font, visualize_splits |
|
|
|
def get_benchmark_data(fuson_db_path, clusters): |
|
""" |
|
""" |
|
|
|
fuson_db = pd.read_csv(fuson_db_path) |
|
|
|
|
|
original_benchmark_sequences = fuson_db.loc[(fuson_db['benchmark'].notna()) ] |
|
benchmark_sequences = fuson_db.loc[ |
|
(fuson_db['benchmark'].notna()) & |
|
(fuson_db['aa_seq'].isin(list(clusters['member seq']))) |
|
]['aa_seq'].to_list() |
|
|
|
|
|
benchmark_seq_ids = fuson_db.loc[fuson_db['benchmark'].notna()]['seq_id'] |
|
|
|
|
|
benchmark_cluster_reps = clusters.loc[clusters['member seq_id'].isin(benchmark_seq_ids)]['representative seq_id'].unique().tolist() |
|
log_update(f"\t{len(benchmark_sequences)}/{len(original_benchmark_sequences)} benchmarking sequences (only those shorter than config.CLUSTERING[\'max_seq_length\']) were grouped into {len(benchmark_cluster_reps)} clusters. These will be reserved for the test set.") |
|
|
|
return benchmark_cluster_reps, benchmark_sequences |
|
|
|
def get_training_dfs(train, val, test): |
|
log_update('\nMaking dataframes for ESM finetuning...') |
|
|
|
|
|
train = train.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) |
|
val = val.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) |
|
test = test.drop(columns=['representative seq_id','member seq_id', 'representative seq']).rename(columns={'member seq':'sequence'}) |
|
|
|
return train, val, test |
|
|
|
def main(): |
|
""" |
|
""" |
|
|
|
LOG_PATH = "splitting_log.txt" |
|
FUSON_DB_PATH = SPLIT.FUSON_DB_PATH |
|
CLUSTER_OUTPUT_PATH = SPLIT.CLUSTER_OUTPUT_PATH |
|
RANDOM_STATE_1 = SPLIT.RANDOM_STATE_1 |
|
TEST_SIZE_1 = SPLIT.TEST_SIZE_1 |
|
RANDOM_STATE_2 = SPLIT.RANDOM_STATE_2 |
|
TEST_SIZE_2 = SPLIT.TEST_SIZE_2 |
|
|
|
|
|
set_font() |
|
|
|
|
|
with open_logfile(LOG_PATH): |
|
|
|
log_update("Loaded data-splitting configurations from config.py") |
|
SPLIT.print_config(indent='\t') |
|
|
|
|
|
os.makedirs("splits",exist_ok=True) |
|
|
|
|
|
clusters = pd.read_csv(CLUSTER_OUTPUT_PATH) |
|
reps = clusters['representative seq_id'].unique().tolist() |
|
log_update(f"\nPreparing clusters...\n\tCollected {len(reps)} clusters for splitting") |
|
|
|
|
|
benchmark_cluster_reps, benchmark_sequences = get_benchmark_data(FUSON_DB_PATH, clusters) |
|
|
|
|
|
splits = split_clusters(reps, benchmark_cluster_reps=benchmark_cluster_reps, |
|
random_state_1 = RANDOM_STATE_1, random_state_2 = RANDOM_STATE_2, test_size_1 = TEST_SIZE_1, test_size_2 = TEST_SIZE_2) |
|
X_train = splits['X_train'] |
|
X_val = splits['X_val'] |
|
X_test = splits['X_test'] |
|
|
|
|
|
train_clusters = clusters.loc[clusters['representative seq_id'].isin(X_train)].reset_index(drop=True) |
|
val_clusters = clusters.loc[clusters['representative seq_id'].isin(X_val)].reset_index(drop=True) |
|
test_clusters = clusters.loc[clusters['representative seq_id'].isin(X_test)].reset_index(drop=True) |
|
|
|
|
|
check_split_validity(train_clusters, val_clusters, test_clusters, benchmark_sequences=benchmark_sequences) |
|
|
|
|
|
min_train_seqlen = min(train_clusters['member seq'].str.len()) |
|
max_train_seqlen = max(train_clusters['member seq'].str.len()) |
|
min_val_seqlen = min(val_clusters['member seq'].str.len()) |
|
max_val_seqlen = max(val_clusters['member seq'].str.len()) |
|
min_test_seqlen = min(test_clusters['member seq'].str.len()) |
|
max_test_seqlen = max(test_clusters['member seq'].str.len()) |
|
log_update(f"\nLength breakdown summary...\n\tTrain: min seq length = {min_train_seqlen}, max seq length = {max_train_seqlen}") |
|
log_update(f"\tVal: min seq length = {min_val_seqlen}, max seq length = {max_val_seqlen}") |
|
log_update(f"\tTest: min seq length = {min_test_seqlen}, max seq length = {max_test_seqlen}") |
|
|
|
|
|
visualize_splits(train_clusters, val_clusters, test_clusters, benchmark_cluster_reps) |
|
|
|
|
|
train_clusters.to_csv("../data/splits/train_cluster_split.csv",index=False) |
|
val_clusters.to_csv("../data/splits/val_cluster_split.csv",index=False) |
|
test_clusters.to_csv("../data/splits/test_cluster_split.csv",index=False) |
|
log_update('\nSaved cluster splits to splitting/train_cluster_split.csv, splitting/val_cluster_split.csv, splitting/test_cluster_split.csv') |
|
cols=','.join(list(train_clusters.columns)) |
|
log_update(f'\tColumns: {cols}') |
|
|
|
|
|
train_df, val_df, test_df = get_training_dfs(train_clusters, val_clusters, test_clusters) |
|
train_df.to_csv("../data/splits/train_df.csv",index=False) |
|
val_df.to_csv("../data/splits/val_df.csv",index=False) |
|
test_df.to_csv("../data/splits/test_df.csv",index=False) |
|
log_update('\nSaved training dataframes to splits/train_df.csv, splits/val_df.csv, splits/test_df.csv') |
|
cols=','.join(list(train_df.columns)) |
|
log_update(f'\tColumns: {cols}') |
|
|
|
if __name__ == "__main__": |
|
main() |