File size: 14,450 Bytes
9a73cb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import numpy as np
import pandas as pd
import torch
import os
from torch.nn.functional import softmax
from fuson_plm.utils.logging import log_update
from torch.utils.data import Dataset, DataLoader
from transformers import AutoTokenizer
from abc import ABC, abstractmethod

#----------------------------------------------------------------------------------------------------------------------------------------------------
#### Masking Rate Scheduler base class and sub classes 
# abstract base class
class MaskingRateScheduler(ABC):
    def __init__(self, total_steps, min_masking_rate, max_masking_rate, last_step=-1):
        self.total_steps = total_steps
        self.min_masking_rate = min_masking_rate
        self.max_masking_rate = max_masking_rate
        self.current_step = last_step

    def step(self):
        self.current_step += 1
    
    def reset(self):
        """Reset the scheduler to its initial state."""
        self.current_step = -1

    def get_masking_rate(self):
        progress = self.current_step / self.total_steps
        return self.compute_masking_rate(progress)

    @abstractmethod
    def compute_masking_rate(self, progress):
        """To be implemented by subclasses for specific increase functions."""
        raise NotImplementedError("Subclasses must implement this method.")


class CosineIncreaseMaskingRateScheduler(MaskingRateScheduler):
    def compute_masking_rate(self, progress):
        # Use a cosine increase function
        cosine_increase = 0.5 * (1 - np.cos(np.pi * progress))
        return self.min_masking_rate + (self.max_masking_rate - self.min_masking_rate) * cosine_increase

class LogLinearIncreaseMaskingRateScheduler(MaskingRateScheduler):
    def compute_masking_rate(self, progress):
        # Avoid log(0) by clamping progress to a minimum of a small positive number
        progress = max(progress, 1e-10)
        log_linear_increase = np.log1p(progress) / np.log1p(1)  # Normalizing to keep range in [0, 1]
        return self.min_masking_rate + (self.max_masking_rate - self.min_masking_rate) * log_linear_increase

class StepwiseIncreaseMaskingRateScheduler(MaskingRateScheduler):
    def __init__(self, total_batches, min_masking_rate, max_masking_rate, num_steps):
        super().__init__(total_steps=total_batches, min_masking_rate=min_masking_rate, max_masking_rate=max_masking_rate)
        self.num_steps = num_steps
        self.batch_interval = total_batches // (num_steps)  # Adjusting to ensure max rate is included
        self.rate_increment = (max_masking_rate - min_masking_rate) / (num_steps - 1)  # Include end rate in the steps

    def compute_masking_rate(self, progress):
        # Determine the current step based on the number of completed batches
        current_step = int(self.current_step / self.batch_interval)
        # Cap the step number to `num_steps - 1` to include the max rate at the final step
        current_step = min(current_step, self.num_steps - 1)
        # Calculate the masking rate for the current step
        masking_rate = self.min_masking_rate + current_step * self.rate_increment
        return masking_rate
    
def get_mask_rate_scheduler(scheduler_type="cosine",min_masking_rate=0.15,max_masking_rate=0.40,total_batches=100,total_steps=20):
    """
    Initialize the mask rate scheduler and return it
    """
    if scheduler_type=="cosine":
        return CosineIncreaseMaskingRateScheduler(total_steps=total_batches,
                                                  min_masking_rate=min_masking_rate, 
                                                  max_masking_rate=max_masking_rate)
    elif scheduler_type=="loglinear":
        return LogLinearIncreaseMaskingRateScheduler(total_steps=total_batches, 
                                                    min_masking_rate=min_masking_rate, 
                                                    max_masking_rate=max_masking_rate)
    elif scheduler_type=="stepwise":
        return StepwiseIncreaseMaskingRateScheduler(total_batches=total_batches, 
                                                    num_steps=total_steps,
                                                    min_masking_rate=min_masking_rate, 
                                                    max_masking_rate=max_masking_rate)
    else:
        raise Exception("Must specify valid scheduler_type: cosine, loglinear, stepwise")

# Adjusted Dataloader for the sequences and probability vectors
class ProteinDataset(Dataset):
    def __init__(self, data_path, tokenizer, probability_type, max_length=512):
        self.dataframe = pd.read_csv(data_path)
        self.tokenizer = tokenizer
        self.probability_type=probability_type
        self.max_length = max_length
        
        self.set_probabilities()

    def __len__(self):
        return len(self.dataframe)

    def set_probabilities(self):
        if self.probability_type=="snp":
            self.dataframe = self.dataframe.rename(columns={'snp_probabilities':'probabilities'})
        if self.probability_type=="uniform":
            self.dataframe['probabilities'] = self.dataframe['sequence'].apply(len).apply(lambda x: ('1,'*x)[0:-1])
            
        # make probabilities into numbers if they aren't already
        if type(self.dataframe['probabilities'][0]) == str:
            self.dataframe['probabilities'] = self.dataframe['probabilities'].apply(
                lambda x: np.array([float(i) for i in x.split(',')])
            )

    def get_padded_probabilities(self, idx):
        '''
        Pads probabilities to max_length if they're too short; truncate them if they're too long
        '''
        no_mask_value = int(-1e9) # will be used to make sure CLS and PAD aren't masked

        # add a no-mask slot for <CLS>
        prob = np.concatenate((
            np.array([no_mask_value]),
            self.dataframe.iloc[idx]['probabilities']
            )
        )

        # Pad with no_mask_value for everything after the probability vector ends
        if len(prob) < self.max_length:
            return np.pad(
                prob,
                (0, self.max_length - len(prob)),
                'constant', constant_values=(0,no_mask_value))

        # If it's too long, we need to truncate, but we also need to change the last token to an <EOS>.
        prob = prob[0:self.max_length-1]
        prob = np.concatenate((
            prob,
            np.array([no_mask_value]),
            )
        )
        return prob

    def __getitem__(self, idx):
        sequence = self.dataframe.iloc[idx]['sequence']
        probability = self.get_padded_probabilities(idx) # extract them
        inputs = self.tokenizer(sequence, return_tensors="pt", padding='max_length', truncation=True, max_length=self.max_length) # does this have to be 512?
        inputs = {key: tensor.squeeze(0) for key, tensor in inputs.items()}  # Remove batch dimension
        return inputs, probability

def get_dataloader(data_path, tokenizer, probability_type='snp', max_length=512, batch_size=8, shuffle=True):
    """
    Creates a DataLoader for the dataset.
    Args:
        data_path (str): Path to the CSV file (train, val, or test).
        batch_size (int): Batch size.
        shuffle (bool): Whether to shuffle the data.
        tokenizer (Tokenizer): tokenizer object for data tokenization
    Returns:
        DataLoader: DataLoader object.
    """
    dataset = ProteinDataset(data_path, tokenizer, probability_type, max_length=max_length)
    return DataLoader(dataset, batch_size=batch_size, shuffle=shuffle)

def check_dataloaders(train_loader, val_loader, test_loader, max_length=512, checkpoint_dir=''):
    log_update(f'\nBuilt train, validation, and test dataloders')
    log_update(f"\tNumber of sequences in the Training DataLoader: {len(train_loader.dataset)}")
    log_update(f"\tNumber of sequences in the Validation DataLoader: {len(val_loader.dataset)}")
    log_update(f"\tNumber of sequences in the Training DataLoader: {len(test_loader.dataset)}")
    dataloader_overlaps = check_dataloader_overlap(train_loader, val_loader, test_loader)
    if len(dataloader_overlaps)==0: log_update("\tDataloaders are clean (no overlaps)")
    else: log_update(f"\tWARNING! sequence overlap found: {','.join(dataloader_overlaps)}")
    
    # write length ranges to a text file
    if not(os.path.exists(f'{checkpoint_dir}/batch_diversity')):
        os.mkdir(f'{checkpoint_dir}/batch_diversity')
    
    max_length_violators = []
    for name, dataloader in {'train':train_loader, 'val':val_loader, 'test':test_loader}.items():
        max_length_followed, length_ranges = check_max_length_and_length_diversity(dataloader, max_length)
        if max_length_followed == False:
            max_length_violators.append(name)
        
        with open(f'{checkpoint_dir}/batch_diversity/{name}_batch_length_ranges.txt','w') as f:
            for tup in length_ranges:
                f.write(f'{tup[0]}\t{tup[1]}\n')
                
    if len(max_length_violators)==0: log_update(f"\tDataloaders follow the max length limit set by user: {max_length}")
    else: log_update(f"\tWARNING! these loaders have sequences longer than max length={max_length}: {','.join(max_length_violators)}")

def check_dataloader_overlap(train_loader, val_loader, test_loader):
    """
    Check the data that's about to go into the model. Make sure there is no overlap between train, test, and val
    
    Returns:
    """
    train_protein_seqs = set(train_loader.dataset.dataframe['sequence'].unique())
    val_protein_seqs = set(val_loader.dataset.dataframe['sequence'].unique())
    test_protein_seqs = set(test_loader.dataset.dataframe['sequence'].unique())

    tr_va = len(train_protein_seqs.intersection(val_protein_seqs))
    tr_te = len(train_protein_seqs.intersection(test_protein_seqs))
    va_te = len(val_protein_seqs.intersection(test_protein_seqs))

    overlaps = []
    if tr_va==tr_te==va_te==0:
        return overlaps             # data is clean
    else:
        if tr_va > 0: overlaps.append(f"Train-Val Overlap={tr_va}")
        if tr_te > 0: overlaps.append(f"Train-Test Overlap={tr_te}")
        if va_te > 0: overlaps.append(f"Val-Test Overlap={va_te}")
        return overlaps

def check_max_length_and_length_diversity(dataloader, max_length):
    """
    Check if all sequences in the DataLoader conform to the specified max_length,
    and return the sequence length ranges within each batch.

    Args:
        dataloader (DataLoader): The DataLoader object to check.
        max_length (int): The maximum allowed sequence length.

    Returns:
        bool: True if all sequences are within the max_length, False otherwise.
        list: A list of tuples representing the min and max sequence lengths in each batch.
    """
    length_ranges = []
    all_within_max_length = True
    
    for batch_idx, (inputs, _) in enumerate(dataloader):
        input_ids = inputs['input_ids']
        
        # Calculate the actual lengths of sequences in this batch
        actual_lengths = (input_ids != dataloader.dataset.tokenizer.pad_token_id).sum(dim=1)
        min_length = actual_lengths.min().item()
        max_length_in_batch = actual_lengths.max().item()
        
        # Check for max length violation
        if max_length_in_batch > max_length:
            #print(f"Error: Sequence exceeds max_length of {max_length} at batch {batch_idx + 1}. Max length found: {max_length_in_batch}")
            all_within_max_length = False
        
        # Store the length range for this batch
        length_ranges.append((min_length, max_length_in_batch))

    #print(f"All sequences in the DataLoader conform to the max_length of {max_length}.") if all_within_max_length else None
    #print(f"Sequence length ranges per batch: {length_ranges}")
    
    return all_within_max_length, length_ranges


def check_max_length_in_dataloader(dataloader, max_length):
    """
    Check if all sequences in the DataLoader conform to the specified max_length.

    Args:
        dataloader (DataLoader): The DataLoader object to check.
        max_length (int): The maximum allowed sequence length.

    Returns:
        bool: True if all sequences are within the max_length, False otherwise.
    """
    for batch_idx, (inputs, _) in enumerate(dataloader):
        input_ids = inputs['input_ids']
        
        # Check if any sequence length exceeds max_length
        if input_ids.size(1) > max_length:
            return False
        
    return True


def batch_sample_mask_tokens_with_probabilities(inputs, probabilities, tokenizer: AutoTokenizer, mask_percentage=0.15):
    """
    """
    #print('the batch sample method was called!')
    labels = inputs["input_ids"].detach().clone()
    labels[labels != tokenizer.mask_token_id] = -100  # Set labels for unmasked tokens to -100

    # Iterate over each sequence and its corresponding probabilities in the batch
    for idx in range(inputs["input_ids"].size(0)):  # Assuming the first dimension is batch size
        input_ids = inputs["input_ids"][idx]
        prob = probabilities[idx]

        cls_token_index = (input_ids == 0).nonzero(as_tuple=False)[0].item()
        eos_token_index = (input_ids == 2).nonzero(as_tuple=False)[0].item()
        seq_length = eos_token_index - (cls_token_index+1)

        assert prob.shape[0] == input_ids.shape[0]

        # Normalize probabilities using softmax
        prob = softmax(prob, dim=0).cpu().numpy() # move to CPU for numpy
        assert 1 - sum(prob) < 1e-6

        # Calculate the number of tokens to mask
        num_tokens_to_mask = int(mask_percentage * seq_length)

        # Choose indices to mask based on the probability distribution
        mask_indices = np.random.choice(input_ids.shape[0], size=num_tokens_to_mask, replace=False, p=prob)
        attention_mask_1_indices = np.arange(0, eos_token_index+1, 1)

        # Mask the selected indices and set the corresponding labels
        labels[idx, mask_indices] = input_ids[mask_indices].detach().clone()
        input_ids[mask_indices] = tokenizer.mask_token_id

        inputs["attention_mask"][idx] = torch.zeros_like(input_ids)
        inputs["attention_mask"][idx][attention_mask_1_indices] = 1 # just added this to try and update the attention mask....

        # Update the input_ids in the inputs dictionary
        inputs["input_ids"][idx] = input_ids

    inputs["labels"] = labels
    return inputs