File size: 17,456 Bytes
3efa812 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 |
#### Recover mutations from literature. A benchmark
import fuson_plm.benchmarking.mutation_prediction.recovery.config as config
import os
os.environ['CUDA_VISIBLE_DEVICES'] = config.CUDA_VISIBLE_DEVICES
import pandas as pd
import numpy as np
import transformers
from transformers import AutoTokenizer, AutoModelForMaskedLM
import logging
import torch
import matplotlib.pyplot as plt
import seaborn as sns
import argparse
import os
import torch.nn.functional as F
from fuson_plm.utils.logging import open_logfile, log_update, get_local_time, print_configpy
from fuson_plm.benchmarking.embed import load_fuson_model
def check_env_variables():
log_update("\nChecking on environment variables...")
log_update(f"\tCUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}")
log_update(f"\ttorch.cuda.device_count(): {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
log_update(f"\t\tDevice {i}: {torch.cuda.get_device_name(i)}")
def get_top_k_aa_mutations(all_probabilities, sequence, i, top_k_mutations, k=10):
"""
Should only return top AA mutations
"""
all_probs = pd.DataFrame.from_dict(all_probabilities, orient='index').reset_index()
all_probs = all_probs.sort_values(by=0,ascending=False).reset_index(drop=True)
top_k_mutation = all_probs['index'].tolist()[0:k]
top_k_mutation = ",".join(top_k_mutation)
top_k_mutations[(sequence[i], i)] = (top_k_mutation, all_probabilities)
return top_k_mutations
def get_top_k_mutations(tokenizer, mask_token_logits, all_probabilities, sequence, i, top_k_mutations, k=3):
top_k_tokens = torch.topk(mask_token_logits, k, dim=1).indices[0].tolist()
top_k_mutation = []
for token in top_k_tokens:
replaced_text = tokenizer.decode([token])
top_k_mutation.append(replaced_text)
top_k_mutation = ",".join(top_k_mutation)
top_k_mutations[(sequence[i], i)] = (top_k_mutation, all_probabilities)
def predict_positionwise_mutations(model, tokenizer, device, sequence):
log_update("\t\tPredicting position-wise mutations...")
top_10_mutations = {}
decoded_full_sequence = ''
mut_count = 0
# Mask and unmask sequentially
for i in range(len(sequence)):
log_update(f"\t\t\t- pos {i+1}/{len(sequence)}")
all_probabilities = {} # stored probabilities of each AA at this position
# Mask JUST the current position
masked_seq = sequence[:i] + '<mask>' + sequence[i+1:]
inputs = tokenizer(masked_seq, return_tensors="pt", padding=True, truncation=True,max_length=2000)
inputs = {k: v.to(device) for k, v in inputs.items()}
# Forward pass
with torch.no_grad():
logits = model(**inputs).logits
# Find logits at masked positions (should just be 1!)
mask_token_index = torch.where(inputs["input_ids"] == tokenizer.mask_token_id)[1]
mask_token_logits = logits[0, mask_token_index, :]
mask_token_probs = F.softmax(mask_token_logits, dim=-1)
# Collect probabilities for natural AAs (token IDs 4-23 inclusive)
for token_idx in range(4, 23 + 1):
token = mask_token_probs[0, token_idx]
replaced_text = tokenizer.decode([token_idx])
all_probabilities[replaced_text] = token.item()
# Isolate top n mutations
#get_top_k_mutations(tokenizer, mask_token_logits, all_probabilities, sequence, i, top_10_mutations, k=10)
get_top_k_aa_mutations(all_probabilities, sequence, i, top_10_mutations, k=10)
# Building whole decoded sequence with top 1 token
top_1_tokens = torch.topk(mask_token_logits, 1, dim=1).indices[0].item()
new_residue = tokenizer.decode([top_1_tokens])
decoded_full_sequence += new_residue
# Check how many mutations in total
if sequence[i] != new_residue:
mut_count += 1
# Convert results into DataFrame
original_residues = []
top10_mutations = []
positions = []
all_logits = []
for (original_residue, position), (top10, probs) in top_10_mutations.items():
original_residues.append(original_residue)
top10_mutations.append(top10)
positions.append(position+1) # originally this line was "position" but it should be position + 1
all_logits.append(probs)
df = pd.DataFrame({
'Original Residue': original_residues,
'Position': positions,
'Top 10 Mutations': top10_mutations,
'All Probabilities': all_logits,
})
df['Top Mutation'] = df['Top 10 Mutations'].apply(lambda x: x.split(',')[0])
df['Top 3 Mutations'] = df['Top 10 Mutations'].apply(lambda x: ','.join(x.split(',')[0:3]))
df['Top 4 Mutations'] = df['Top 10 Mutations'].apply(lambda x: ','.join(x.split(',')[0:4]))
df['Top 5 Mutations'] = df['Top 10 Mutations'].apply(lambda x: ','.join(x.split(',')[0:5]))
return df, decoded_full_sequence, mut_count
def evaluate_literature_mut_performance(predicted_mutations_df, literature_mutations_df, decoded_full_sequence, mut_count, sequence="", focus_region_start=0, focus_region_end=0, offset=0):
"""
Given a dataframe of predicted mutations and literature mutations, see how well the predicted mutations did
"""
log_update("\t\tComparing predicted mutations to literature-provided mutations")
return_df = predicted_mutations_df.copy(deep=True)
return_df['Literature Mutation'] = [np.nan]*len(return_df)
return_df['Top 1 Hit'] = [np.nan]*len(return_df)
return_df['Top 3 Hit'] = [np.nan]*len(return_df)
return_df['Top 4 Hit'] = [np.nan]*len(return_df)
return_df['Top 5 Hit'] = [np.nan]*len(return_df)
return_df['Top 10 Hit'] = [np.nan]*len(return_df)
log_update(f"\tFormula: new position = {focus_region_start} + lit_position - {offset}")
# Iterate through the literature mutations rows
for i, row in literature_mutations_df.iterrows():
lit_position = row['Position']
lit_mutations = row['Mutation']
original_residue = row['Original Residue']
seq_position = focus_region_start + (lit_position - offset) # find position of the sequence
matching_row = return_df[return_df['Position'] == seq_position]
matching_row_index = matching_row.index
matching_residue = matching_row.iloc[0]['Original Residue']
match = original_residue==matching_residue
log_update(f"\tLit pos: {lit_position}, OG residue: {original_residue}, Full sequence pos: {seq_position}, Full sequence residue: {matching_residue}\n\t\tMatch: {match}")
# Iterate through the matching rows. We are at the right spot if we have the right original residue.
if match:
top_mutation = matching_row.iloc[0]['Top Mutation'] # get top 3 mutations
top_mutation = top_mutation.split(',')
print(top_mutation)
return_df.loc[matching_row_index, 'Literature Mutation'] = lit_mutations # get desired mutation
# If we got any of the mutatios reported in the literature, hit!
if any(letter in lit_mutations for letter in top_mutation):
return_df.loc[matching_row_index, 'Top 1 Hit'] = True
else:
return_df.loc[matching_row_index, 'Top 1 Hit'] = False
for k in [3,4,5,10]:
top_k_mutations = matching_row.iloc[0][f'Top {k} Mutations'] # get top 3 mutations
top_k_mutations = top_k_mutations.split(",")
print(top_k_mutations)
return_df.loc[matching_row_index, 'Literature Mutation'] = lit_mutations # get desired mutation
# If we got any of the mutatios reported in the literature, hit!
if any(letter in lit_mutations for letter in top_k_mutations):
return_df.loc[matching_row_index, f'Top {k} Hit'] = True
else:
return_df.loc[matching_row_index, f'Top {k} Hit'] = False
return return_df, (decoded_full_sequence, mut_count, (mut_count/len(sequence)) * 100)
def evaluate_eml4_alk(model, tokenizer, device, model_str):
alk_muts = pd.read_csv("alk_mutations.csv")
decoded_full_sequence, mut_count = None, None
EML4_ALK_SEQ = np.nan ## not publicly available
cons_domain_alk = np.nan # no publicly available
focus_region_start = EML4_ALK_SEQ.find(cons_domain_alk)
if os.path.isfile(f"eml4_alk_mutations/{model_str}/mutated_df.csv"):
log_update(f"Mutation predictions for {model_str} have already been calculated. Loading from eml4_alk_mutations/{model_str}/mutated_df.csv")
mutated_df = pd.read_csv(f"eml4_alk_mutations/{model_str}/mutated_df.csv")
mutated_summary = pd.read_csv(f"eml4_alk_mutations/{model_str}/mutated_summary.csv")
decoded_full_sequence = mutated_summary['decoded_full_sequence'][0]
mut_count = mutated_summary['mut_count'][0]
else:
mutated_df, decoded_full_sequence, mut_count = predict_positionwise_mutations(model, tokenizer, device, EML4_ALK_SEQ)
mutated_summary = pd.DataFrame(data={'decoded_full_sequence':[decoded_full_sequence],'mut_count':[mut_count]})
mutated_df.to_csv(f"eml4_alk_mutations/{model_str}/mutated_df.csv",index=False)
mutated_summary.to_csv(f"eml4_alk_mutations/{model_str}/mutated_summary.csv",index=False)
lit_performance_df, (mut_seq, mut_count, mut_pcnt) = evaluate_literature_mut_performance(mutated_df, alk_muts, decoded_full_sequence, mut_count,
sequence=EML4_ALK_SEQ,
focus_region_start=focus_region_start,
focus_region_end = focus_region_start + len(cons_domain_alk),
offset=1115 # original: 1116
)
return lit_performance_df, (mut_seq, mut_count, mut_pcnt)
def evaluate_bcr_abl(model, tokenizer, device, model_str):
abl_muts = pd.read_csv("abl_mutations.csv")
decoded_full_sequence, mut_count = None, None
BCR_ABL_SEQ = np.nan ## not publicly available
cons_domain_abl = np.nan ## not publicly available
focus_region_start = BCR_ABL_SEQ.find(cons_domain_abl)
if os.path.isfile(f"bcr_abl_mutations/{model_str}/mutated_df.csv"):
log_update(f"Mutation predictions for {model_str} have already been calculated. Loading from bcr_abl_mutations/{model_str}/mutated_df.csv")
mutated_df = pd.read_csv(f"bcr_abl_mutations/{model_str}/mutated_df.csv")
mutated_summary = pd.read_csv(f"bcr_abl_mutations/{model_str}/mutated_summary.csv")
decoded_full_sequence = mutated_summary['decoded_full_sequence'][0]
mut_count = mutated_summary['mut_count'][0]
else:
mutated_df, decoded_full_sequence, mut_count = predict_positionwise_mutations(model, tokenizer, device, BCR_ABL_SEQ)
mutated_summary = pd.DataFrame(data={'decoded_full_sequence':[decoded_full_sequence],'mut_count':[mut_count]})
mutated_df.to_csv(f"bcr_abl_mutations/{model_str}/mutated_df.csv",index=False)
mutated_summary.to_csv(f"bcr_abl_mutations/{model_str}/mutated_summary.csv",index=False)
lit_performance_df, (mut_seq, mut_count, mut_pcnt) = evaluate_literature_mut_performance(mutated_df, abl_muts, decoded_full_sequence, mut_count,
sequence=BCR_ABL_SEQ,
focus_region_start=focus_region_start,
focus_region_end = focus_region_start + len(cons_domain_abl),
offset=241 # original: 242
)
return lit_performance_df, (mut_seq, mut_count, mut_pcnt)
def summarize_individual_performance(performance_df, path_to_lit_df):
"""
performance_df = dataframe with stats on performance
path_to_lit_df = original dataframe
"""
# Load original df
lit_muts = pd.read_csv(path_to_lit_df)
# Mutated Sequence,Original Residue,Position,Top 3 Mutations,Literature Mutation,Hit,All Probabilities
mut_rows = performance_df.loc[performance_df['Literature Mutation'].notna()].reset_index(drop=True)
mut_rows = mut_rows[['Original Residue','Position','Literature Mutation',
'Top Mutation','Top 1 Hit',
'Top 3 Mutations','Top 3 Hit',
'Top 4 Mutations','Top 4 Hit',
'Top 5 Mutations','Top 5 Hit',
'Top 10 Mutations','Top 10 Hit'
]]
mut_rows_str = mut_rows.to_string(index=False)
mut_rows_str = "\t\t" + mut_rows_str.replace("\n","\n\t\t")
log_update(f"\tPerformance on all mutated positions shown below:\n{mut_rows_str}")
# Summarize: total hits, percentage of hits
total_original_muts = len(lit_muts)
for k in [1,3,4,5,10]:
total_hits = len(mut_rows.loc[mut_rows[f'Top {k} Hit']==True])
total_misses = len(mut_rows.loc[mut_rows[f'Top {k} Hit']==False])
total_potential_muts = total_hits+total_misses
hit_pcnt = round(100*total_hits/total_potential_muts, 2)
miss_pcnt = round(100*total_misses/total_potential_muts, 2)
log_update(f"\tTotal positions tested / total positions mutated in literature: {total_potential_muts}/{total_original_muts}")
log_update(f"\n\t\tTop {k} hit performance:\n\t\t\tHits:{total_hits} ({hit_pcnt}%)\n\t\t\tMisses:{total_misses} ({miss_pcnt}%)")
def main():
os.makedirs('results',exist_ok=True)
output_dir = f'results/{get_local_time()}'
os.makedirs(output_dir,exist_ok=True)
os.makedirs("bcr_abl_mutations",exist_ok=True)
os.makedirs("eml4_alk_mutations",exist_ok=True)
with open_logfile(f"{output_dir}/mutation_discovery_log.txt"):
print_configpy(config)
# Make sure environment variables are set correctly
check_env_variables()
# Get device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
log_update(f"Using device: {device}")
# Load fuson
fuson_ckpt_path = config.FUSON_PLM_CKPT
if fuson_ckpt_path=="FusOn-pLM":
fuson_ckpt_path="../../../.."
model_name = "fuson_plm"
model_epoch = "best"
model_str = f"fuson_plm/best"
else:
model_name = list(fuson_ckpt_path.keys())[0]
epoch = list(fuson_ckpt_path.values())[0]
fuson_ckpt_path = f'../../training/checkpoints/{model_name}/checkpoint_epoch_{epoch}'
model_name, model_epoch = fuson_ckpt_path.split('/')[-2::]
model_epoch = model_epoch.split('checkpoint_')[-1]
model_str = f"{model_name}/{model_epoch}"
log_update(f"\nLoading FusOn-pLM model from {fuson_ckpt_path}")
fuson_tokenizer = AutoTokenizer.from_pretrained(fuson_ckpt_path)
fuson_model = AutoModelForMaskedLM.from_pretrained(fuson_ckpt_path)
fuson_model.to(device)
fuson_model.eval()
# Evaluate BCR::ABL performance with FusOn
os.makedirs(f"bcr_abl_mutations/{model_name}",exist_ok=True)
os.makedirs(f"bcr_abl_mutations/{model_name}/{model_epoch}",exist_ok=True)
log_update("\tEvaluating performance on BCR::ABL mutation prediction with FusOn")
abl_lit_performance_fuson, (mut_seq, mut_count, mut_pcnt) = evaluate_bcr_abl(fuson_model, fuson_tokenizer, device, model_str)
abl_lit_performance_fuson.to_csv(f'{output_dir}/BCR_ABL_mutation_recovery_fuson.csv', index = False)
with open(f'{output_dir}/BCR_ABL_mutation_recovery_fuson_summary.txt', 'w') as f:
f.write(mut_seq)
f.write(f'number of mutations: {mut_count}')
f.write(f'percentage of seq mutated: {mut_pcnt}')
# Evaluate EML4::ALK performance with Fuson
os.makedirs(f"eml4_alk_mutations/{model_name}",exist_ok=True)
os.makedirs(f"eml4_alk_mutations/{model_name}/{model_epoch}",exist_ok=True)
log_update("\tEvaluating performance on EML4::ALK mutation prediction with FusOn")
alk_lit_performance_fuson, (mut_seq, mut_count, mut_pcnt) = evaluate_eml4_alk(fuson_model, fuson_tokenizer, device, model_str)
alk_lit_performance_fuson.to_csv(f'{output_dir}/EML4_ALK_mutation_recovery_fuson.csv', index = False)
with open(f'{output_dir}/EML4_ALK_mutation_recovery_fuson_summary.txt', 'w') as f:
f.write(mut_seq)
f.write(f'number of mutations: {mut_count}')
f.write(f'percentage of seq mutated: {mut_pcnt}')
### Summarize
log_update("\nSummarizing FusOn-pLM performance on BCR::ABL")
summarize_individual_performance(abl_lit_performance_fuson, "abl_mutations.csv")
log_update("\nSummarizing FusOn-pLM performance on EML4::ALK")
summarize_individual_performance(alk_lit_performance_fuson, "alk_mutations.csv")
if __name__ == "__main__":
main() |