File size: 21,273 Bytes
c43fbc6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
import pandas as pd
import numpy as np
import pickle
from sklearn.manifold import TSNE
import matplotlib.font_manager as fm
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.patches as patches
import seaborn as sns
import umap
import os

from fuson_plm.benchmarking.embed import embed_dataset_for_benchmark
import fuson_plm.benchmarking.embedding_exploration.config as config
from fuson_plm.utils.visualizing import set_font
from fuson_plm.utils.constants import TCGA_CODES, FODB_CODES, VALID_AAS, DELIMITERS
from fuson_plm.utils.logging import get_local_time, open_logfile, log_update, print_configpy


def get_dimred_embeddings(embeddings, dimred_type="umap"):
    if dimred_type=="umap":
        dimred_embeddings = get_umap_embeddings(embeddings)
        return dimred_embeddings
    if dimred_type=="tsne":
        dimred_embeddings = get_tsne_embeddings(embeddings)
        return dimred_embeddings

def get_tsne_embeddings(embeddings):
    embeddings = np.array(embeddings)
    tsne = TSNE(n_components=2, random_state=42,perplexity=5)
    tsne_embeddings = tsne.fit_transform(embeddings)
    return tsne_embeddings

def get_umap_embeddings(embeddings):
    embeddings = np.array(embeddings)
    umap_model = umap.UMAP(n_components=2, random_state=42, n_neighbors=15, metric='euclidean') # default parameters for UMAP
    umap_embeddings = umap_model.fit_transform(embeddings)
    return umap_embeddings

def plot_half_filled_circle(ax, x, y, left_color, right_color, size=100):
    """
    Plots a circle filled in halves with specified colors.
    
    Parameters:
    - ax: Matplotlib axis to draw on.
    - x, y: Coordinates of the marker.
    - left_color: Color of the left half.
    - right_color: Color of the right half.
    - size: Size of the marker.
    """
    radius = (size ** 0.5) / 100  # Scale the radius
    # Create left half-circle (0° to 180°)
    left_half = patches.Wedge((x, y), radius, 90, 270, color=left_color, ec="black")
    # Create right half-circle (180° to 360°)
    right_half = patches.Wedge((x, y), radius, 270, 90, color=right_color, ec="black")
    
    # Add both halves to the plot
    ax.add_patch(left_half)
    ax.add_patch(right_half)

def plot_umap_scatter_tftf_kk(df, filename="umap.png"):
    """
    Plots a 2D scatterplot of UMAP coordinates with different markers and colors based on 'type'.
    Only for TF::TF and Kinase::Kinase fusions

    Parameters:
    - df (pd.DataFrame): DataFrame containing 'umap1', 'umap2', 'sequence', and 'type' columns.
    """
    set_font()

    # Define colors for each type
    colors = {
        "TF": "pink",
        "Kinase": "orange"
    }

    # Define marker types and colors for each combination
    marker_colors = {
        "TF::TF": colors["TF"],
        "Kinase::Kinase": colors["Kinase"],
    }

    # Create the plot
    fig, ax = plt.subplots(figsize=(10, 8))
    x_min, x_max = df["umap1"].min() - 1, df["umap1"].max() + 1
    y_min, y_max = df["umap2"].min() - 1, df["umap2"].max() + 1
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    
    # Plot each point with the specified half-filled marker
    for i in range(len(df)):
        row = df.iloc[i]
        marker_type = row["fusion_type"]
        x, y = row["umap1"], row["umap2"]
        color = marker_colors[marker_type]
        
        ax.scatter(x, y, color=color, s=15, edgecolors="black", linewidth=0.5)
    
    # Add custom legend
    legend_elements = [
        patches.Patch(facecolor="pink", edgecolor="black", label="TF::TF"),
        patches.Patch(facecolor="orange", edgecolor="black", label="Kinase::Kinase")
    ]
    ax.legend(handles=legend_elements, title="Fusion Type", fontsize=16, title_fontsize=16)

    # Add labels and title
    plt.xlabel("UMAP 1", fontsize=20)
    plt.ylabel("UMAP 2", fontsize=20)
    plt.title("FusOn-pLM-embedded Transcription Factor and Kinase Fusions", fontsize=20)
    plt.tight_layout()
    
    # Save and show the plot
    plt.savefig(filename, dpi=300)
    plt.show()
    
def plot_umap_scatter_half_filled(df, filename="umap.png"):
    """
    Plots a 2D scatterplot of UMAP coordinates with different markers and colors based on 'type'.

    Parameters:
    - df (pd.DataFrame): DataFrame containing 'umap1', 'umap2', 'sequence', and 'type' columns.
    """
    # Define colors for each type
    colors = {
        "TF": "pink",
        "Kinase": "orange",
        "Other": "grey"
    }

    # Define marker types and colors for each combination
    marker_colors = {
        "TF::TF": {"left": colors["TF"], "right": colors["TF"]},
        "TF::Other": {"left": colors["TF"], "right": colors["Other"]},
        "Other::TF": {"left": colors["Other"], "right": colors["TF"]},
        "Kinase::Kinase": {"left": colors["Kinase"], "right": colors["Kinase"]},
        "Kinase::Other": {"left": colors["Kinase"], "right": colors["Other"]},
        "Other::Kinase": {"left": colors["Other"], "right": colors["Kinase"]},
        "Kinase::TF": {"left": colors["Kinase"], "right": colors["TF"]},
        "TF::Kinase": {"left": colors["TF"], "right": colors["Kinase"]},
        "Other::Other": {"left": colors["Other"], "right": colors["Other"]}
    }

    # Create the plot
    fig, ax = plt.subplots(figsize=(10, 8))
    x_min, x_max = df["umap1"].min() - 1, df["umap1"].max() + 1
    y_min, y_max = df["umap2"].min() - 1, df["umap2"].max() + 1
    ax.set_xlim(x_min, x_max)
    ax.set_ylim(y_min, y_max)
    
    # Plot each point with the specified half-filled marker
    for i in range(len(df)):
        row = df.iloc[i]
        marker_type = row["fusion_type"]
        x, y = row["umap1"], row["umap2"]
        left_color = marker_colors[marker_type]["left"]
        right_color = marker_colors[marker_type]["right"]
        plot_half_filled_circle(ax, x, y, left_color, right_color, size=100)
    
    # Add custom legend
    legend_elements = [
        patches.Patch(facecolor="pink", edgecolor="black", label="TF"),
        patches.Patch(facecolor="orange", edgecolor="black", label="Kinase"),
        patches.Patch(facecolor="grey", edgecolor="black", label="Other")
    ]
    ax.legend(handles=legend_elements, title="Type")

    # Add labels and title
    plt.xlabel("UMAP 1")
    plt.ylabel("UMAP 2")
    plt.title("UMAP Scatter Plot")
    plt.tight_layout()
    
    # Save and show the plot
    plt.savefig(filename, dpi=300)
    plt.show()

def get_gene_type(gene, d):
    if gene in d:
        if d[gene] == 'kinase':
            return 'Kinase'
        if d[gene] == 'tf':
            return 'TF'
    else: 
        return 'Other'
    
def get_tf_and_kinase_fusions_dataset():
        # Load TF and Kinase Fusions
    tf_kinase_parts = pd.read_csv("data/salokas_2020_tableS3.csv")
    print(tf_kinase_parts)
    ht_tf_kinase_dict = dict(zip(tf_kinase_parts['Gene'],tf_kinase_parts['Kinase or TF']))

    # This one has each row with one fusiongene name
    fuson_ht_db = pd.read_csv("../../data/blast/fuson_ht_db.csv")
    fuson_ht_db[['hg','tg']] = fuson_ht_db['fusiongenes'].str.split("::",expand=True)

    fuson_ht_db['hg_type'] = fuson_ht_db['hg'].apply(lambda x: get_gene_type(x, ht_tf_kinase_dict))
    fuson_ht_db['tg_type'] = fuson_ht_db['tg'].apply(lambda x: get_gene_type(x, ht_tf_kinase_dict))
    fuson_ht_db['fusion_type'] = fuson_ht_db['hg_type']+'::'+fuson_ht_db['tg_type']
    fuson_ht_db['type']=['fusion']*len(fuson_ht_db) 
    # Keep 100 things in each category
    categories = pd.DataFrame(fuson_ht_db['fusion_type'].value_counts()).reset_index()['index'].tolist()
    categories = ["TF::TF","Kinase::Kinase"] # manually set some easier categories 
    print(categories)
    plot_df = None

    for i, cat in enumerate(categories):
        random_sample = fuson_ht_db.loc[fuson_ht_db['fusion_type']==cat].reset_index(drop=True)
        #random_sample = random_sample.sample(n=100, random_state=1).reset_index(drop=True)
        if i==0:
            plot_df = random_sample
        else:
            plot_df = pd.concat([plot_df,random_sample],axis=0).reset_index(drop=True)

    print(plot_df['fusion_type'].value_counts())

    # Now, need to add in the embeddings
    plot_df = plot_df[['aa_seq','fusiongenes','fusion_type','type']].rename(
        columns={'aa_seq':'sequence','fusiongenes':'ID'}
    )
    
    return plot_df

def make_tf_and_kinase_fusions_plot(seqs_with_embeddings, savedir = '', dimred_type='umap'):    
    fuson_db = pd.read_csv("../../data/fuson_db.csv")
    seq_id_dict = dict(zip(fuson_db['aa_seq'],fuson_db['seq_id']))
    
    # add sequences so we can save results/sequence
    data = seqs_with_embeddings[[f'{dimred_type}1',f'{dimred_type}2','sequence','fusion_type','ID']]
    data['seq_id'] = data['sequence'].map(seq_id_dict)

    tfkinase_save_dir = f"{savedir}"
    os.makedirs(tfkinase_save_dir,exist_ok=True)
    data.to_csv(f"{tfkinase_save_dir}/{dimred_type}_tf_and_kinase_fusions_source_data.csv",index=False)
    plot_umap_scatter_tftf_kk(data,filename=f"{tfkinase_save_dir}/{dimred_type}_tf_and_kinase_fusions_visualization.png")
        
def tf_and_kinase_fusions_plot(dimred_types, output_dir):
    """
    Makes the embeddings, THEN calls the plot. only on the four favorites 
    """
    plot_df = get_tf_and_kinase_fusions_dataset()
    plot_df.to_csv("data/tf_and_kinase_fusions.csv",index=False)
    
    # path to the pkl file with FOdb embeddings
    input_fname='tf_and_kinase'
    all_embedding_paths = embed_dataset_for_benchmark(
                                        fuson_ckpts=config.FUSON_PLM_CKPT, 
                                        input_data_path='data/tf_and_kinase_fusions.csv', input_fname=input_fname, 
                                        average=True, seq_col='sequence',
                                        benchmark_fusonplm=True, 
                                        benchmark_esm=False, 
                                        benchmark_fo_puncta_ml=False, 
                                        overwrite=config.PERMISSION_TO_OVERWRITE)

    # For each of the models we are benchmarking, load embeddings and make plots 
    log_update("\nEmbedding sequences")
    # loop through the embedding paths and train each one
    for embedding_path, details in all_embedding_paths.items():
        log_update(f"\tBenchmarking embeddings at: {embedding_path}")
        try:
            with open(embedding_path, "rb") as f:
                embeddings = pickle.load(f)
        except: 
            raise Exception(f"Cannot read embeddings from {embedding_path}")
        
        # combine the embeddings and splits into one dataframe
        seqs_with_embeddings = pd.DataFrame.from_dict(embeddings.items())
        seqs_with_embeddings = seqs_with_embeddings.rename(columns={0: 'sequence', 1: 'embedding'})    # the column that was called FusOn-pLM is now called embedding
        seqs_with_embeddings = pd.merge(seqs_with_embeddings, plot_df, on='sequence', how='inner')
        # get UMAP transform of the embeddings
        for dimred_type in dimred_types:
            dimred_embeddings = get_dimred_embeddings(seqs_with_embeddings['embedding'].tolist(),dimred_type=dimred_type)

            # turn the result into a dataframe, and add it to seqs_with_embeddings
            data = pd.DataFrame(dimred_embeddings, columns=[f'{dimred_type}1', f'{dimred_type}2'])
            # save the umap data!
            model_name = "_".join(embedding_path.split('embeddings/')[1].split('/')[1:-1])
            
            seqs_with_embeddings[[f'{dimred_type}1', f'{dimred_type}2']] = data

            # make subdirectory 
            intermediate = '/'.join(embedding_path.split('embeddings/')[1].split('/')[0:-1])
            cur_output_dir = f"{output_dir}/{dimred_type}_plots/{intermediate}/{input_fname}"
        
            os.makedirs(cur_output_dir,exist_ok=True)
            make_tf_and_kinase_fusions_plot(seqs_with_embeddings, savedir = cur_output_dir, dimred_type=dimred_type)
  
def make_fusion_v_parts_favorites_plot(seqs_with_embeddings, savedir = None, dimred_type='umap'):
    """
    Make plots showing that PAX3::FOXO1, EWS::FLI1, SS18::SSX1, EML4::ALK are embedded distinctly from their heads and tails 
    """
    set_font()
    
    # Load one sequence each for four proteins in the test set: PAX3::FOXO1, EWS::FLI1, SS18::SSX1, EML4::ALK
    data = pd.read_csv("data/top_genes.csv")
    seqs_with_embeddings = pd.merge(seqs_with_embeddings, data, on="sequence")
    seqs_with_embeddings["Type"] = [""]*len(seqs_with_embeddings)
    seqs_with_embeddings.loc[
        seqs_with_embeddings["gene"].str.contains("::"),"Type"
    ] = "fusion_embeddings"
    heads = seqs_with_embeddings.loc[seqs_with_embeddings["gene"].str.contains("::")]["gene"].str.split("::",expand=True)[0].tolist()
    tails = seqs_with_embeddings.loc[seqs_with_embeddings["gene"].str.contains("::")]["gene"].str.split("::",expand=True)[1].tolist()
    seqs_with_embeddings.loc[
        seqs_with_embeddings["gene"].isin(heads),"Type"
    ] = "h_embeddings"
    seqs_with_embeddings.loc[
        seqs_with_embeddings["gene"].isin(tails),"Type"
    ] = "t_embeddings"
    
    # make merge
    merge = seqs_with_embeddings.loc[seqs_with_embeddings['gene'].str.contains('::')].reset_index(drop=True)[['gene','sequence']]
    merge["head"] = merge["gene"].str.split("::",expand=True)[0]
    merge["tail"] = merge["gene"].str.split("::",expand=True)[1]
    merge = pd.merge(merge, seqs_with_embeddings[['gene','sequence']].rename(
    columns={'gene': 'head', 'sequence': 'h_sequence'}),
         on='head',how='left'
    )
    merge = pd.merge(merge, seqs_with_embeddings[['gene','sequence']].rename(
        columns={'gene': 'tail', 'sequence': 't_sequence'}),
            on='tail',how='left'
    )
    
    plt.figure()

    # Define colors and markers
    colors = {
        'fusion_embeddings': '#cf9dfa', # old color #0C4A4D
        'h_embeddings': '#eb8888',   # Updated to original names; old color #619283
        't_embeddings': '#5fa3e3',   # Updated to original names; old color #619283
    }
    markers = {
        'fusion_embeddings': 'o',
        'h_embeddings': '^',         # Updated to original names
        't_embeddings': 'v'        # Updated to original names
    }
    label_map = {
        'fusion_embeddings': 'Fusion',
        'h_embeddings': 'Head',   # Updated label
        't_embeddings': 'Tail',   # Updated label
    }

    # Create a 2x3 grid of plots
    fig, axes = plt.subplots(2, 3, figsize=(18, 12))
    #fig, axes = plt.subplots(1, 4, figsize= (18, 7))

    # Get the global min and max for the x and y axis ranges
    all_tsne1 = seqs_with_embeddings[f'{dimred_type}1']
    all_tsne2 = seqs_with_embeddings[f'{dimred_type}2']
    x_min, x_max = all_tsne1.min(), all_tsne1.max()
    y_min, y_max = all_tsne2.min(), all_tsne2.max()
    x_min, x_max = [11, 16] # manually set range for cleaner plotting
    y_min, y_max = [10, 22]

    # Determine tick positions
    x_ticks = np.arange(x_min, x_max + 1, 1)
    y_ticks = np.arange(y_min, y_max + 1, 1)

    # Flatten the axes array for easier iteration
    axes = axes.flatten()

    for i, ax in enumerate(axes):
        # Extract the gene names from the current row
        fgene_name = merge.loc[i, 'gene']
        hgene = merge.loc[i, 'head']
        tgene = merge.loc[i, 'tail']

        # Filter tsne_embeddings for the relevant entries
        tsne_data = seqs_with_embeddings[seqs_with_embeddings['gene'].isin([fgene_name, hgene, tgene])]

        # Plot each type
        for emb_type in tsne_data['Type'].unique():
            subset = tsne_data[tsne_data['Type'] == emb_type]
            ax.scatter(subset[f'{dimred_type}1'], subset[f'{dimred_type}2'], label=label_map[emb_type], color=colors[emb_type], marker=markers[emb_type], s=120, zorder=3)

        ax.set_title(f'{fgene_name}',fontsize=44)
        label_transform = {
            'tsne': 't-SNE',
            'umap': 'UMAP'
        }
        ax.set_xlabel(f'{label_transform[dimred_type]} 1',fontsize=44)
        ax.set_ylabel(f'{label_transform[dimred_type]} 2',fontsize=44)
        ax.grid(True, which='both', linestyle='--', linewidth=0.5, color='gray', zorder=1)

        # Set the same limits and ticks for all axes
        ax.set_xlim(x_min, x_max)
        ax.set_ylim(y_min, y_max)
        ax.set_xticks(x_ticks)#\\, labelsize=24)
        ax.set_yticks(y_ticks)#, labelsize=24)

        # Rotate x-axis labels
        ax.set_xticklabels(ax.get_xticks(), rotation=45, ha='right')

        ax.tick_params(axis='x', labelsize=16)
        ax.tick_params(axis='y', labelsize=16)

        for label in ax.get_xticklabels():
            label.set_fontsize(24)
        for label in ax.get_yticklabels():
            label.set_fontsize(24)

        # Set font size for the legend if needed
        if i == 0:
            legend = ax.legend(fontsize=20, markerscale=2, loc='best')
            for text in legend.get_texts():
                text.set_fontsize(24)

    # Adjust layout to prevent overlap
    plt.tight_layout()
    
    # Show the plot
    plt.show()

    # Save the figure
    plt.savefig(f'{savedir}/{dimred_type}_favorites_visualization.png', dpi=300)
    
    # Save the data
    seq_to_id_dict = pd.read_csv("../../data/fuson_db.csv")
    seq_to_id_dict = dict(zip(seq_to_id_dict['aa_seq'],seq_to_id_dict['seq_id']))
    seqs_with_embeddings['seq_id'] = seqs_with_embeddings['sequence'].map(seq_to_id_dict)
    seqs_with_embeddings[['umap1','umap2','sequence','Type','gene','id','seq_id']].to_csv(f"{savedir}/{dimred_type}_favorites_source_data.csv",index=False)
            
def fusion_v_parts_favorites(dimred_types, output_dir):
    """
    Makes the embeddings, THEN calls the plot. only on the four favorites 
    """
    
    # path to the pkl file with FOdb embeddings
    input_fname='favorites'
    all_embedding_paths = embed_dataset_for_benchmark(
                                        fuson_ckpts=config.FUSON_PLM_CKPT, 
                                        input_data_path='data/top_genes.csv', input_fname=input_fname, 
                                        average=True, seq_col='sequence',
                                        benchmark_fusonplm=True, 
                                        benchmark_esm=False, 
                                        benchmark_fo_puncta_ml=False, 
                                        overwrite=config.PERMISSION_TO_OVERWRITE)

    # For each of the models we are benchmarking, load embeddings and make plots 
    log_update("\nEmbedding sequences")
    # loop through the embedding paths and train each one
    for embedding_path, details in all_embedding_paths.items():
        log_update(f"\tBenchmarking embeddings at: {embedding_path}")
        try:
            with open(embedding_path, "rb") as f:
                embeddings = pickle.load(f)
        except: 
            raise Exception(f"Cannot read embeddings from {embedding_path}")
        
        # combine the embeddings and splits into one dataframe
        seqs_with_embeddings = pd.DataFrame.from_dict(embeddings.items())
        seqs_with_embeddings = seqs_with_embeddings.rename(columns={0: 'sequence', 1: 'embedding'})    # the column that was called FusOn-pLM is now called embedding
        
        # get UMAP transform of the embeddings
        for dimred_type in dimred_types:
            dimred_embeddings = get_dimred_embeddings(seqs_with_embeddings['embedding'].tolist(),dimred_type=dimred_type)

            # turn the result into a dataframe, and add it to seqs_with_embeddings
            data = pd.DataFrame(dimred_embeddings, columns=[f'{dimred_type}1', f'{dimred_type}2'])
            # save the umap data!
            model_name = "_".join(embedding_path.split('embeddings/')[1].split('/')[1:-1])
            
            seqs_with_embeddings[[f'{dimred_type}1', f'{dimred_type}2']] = data

            # make subdirectory 
            intermediate = '/'.join(embedding_path.split('embeddings/')[1].split('/')[0:-1])
            cur_output_dir = f"{output_dir}/{dimred_type}_plots/{intermediate}/{input_fname}"
        
            os.makedirs(cur_output_dir,exist_ok=True)
            make_fusion_v_parts_favorites_plot(seqs_with_embeddings, savedir = cur_output_dir, dimred_type=dimred_type)
  
def main():
    # make directory to save results 
    os.makedirs('results',exist_ok=True)
    output_dir = f'results/{get_local_time()}'
    os.makedirs(output_dir,exist_ok=True)
    
    dimred_types = []
    if config.PLOT_UMAP: 
        dimred_types.append("umap")
        #os.makedirs(f"{output_dir}/umap_data",exist_ok=True)
        os.makedirs(f"{output_dir}/umap_plots",exist_ok=True)
    if config.PLOT_TSNE: 
        dimred_types.append("tsne")
        #os.makedirs(f"{output_dir}/tsne_data",exist_ok=True)
        os.makedirs(f"{output_dir}/tsne_plots",exist_ok=True)
        
    with open_logfile(f'{output_dir}/embedding_exploration_log.txt'):
        print_configpy(config)
        # make the disinct embeddings plot
        fusion_v_parts_favorites(dimred_types, output_dir)
        
        tf_and_kinase_fusions_plot(dimred_types, output_dir)
        
        
if __name__ == "__main__":
    main()