File size: 21,273 Bytes
c43fbc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import pandas as pd
import numpy as np
import pickle
from sklearn.manifold import TSNE
import matplotlib.font_manager as fm
from matplotlib.font_manager import FontProperties
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import matplotlib.patches as patches
import seaborn as sns
import umap
import os
from fuson_plm.benchmarking.embed import embed_dataset_for_benchmark
import fuson_plm.benchmarking.embedding_exploration.config as config
from fuson_plm.utils.visualizing import set_font
from fuson_plm.utils.constants import TCGA_CODES, FODB_CODES, VALID_AAS, DELIMITERS
from fuson_plm.utils.logging import get_local_time, open_logfile, log_update, print_configpy
def get_dimred_embeddings(embeddings, dimred_type="umap"):
if dimred_type=="umap":
dimred_embeddings = get_umap_embeddings(embeddings)
return dimred_embeddings
if dimred_type=="tsne":
dimred_embeddings = get_tsne_embeddings(embeddings)
return dimred_embeddings
def get_tsne_embeddings(embeddings):
embeddings = np.array(embeddings)
tsne = TSNE(n_components=2, random_state=42,perplexity=5)
tsne_embeddings = tsne.fit_transform(embeddings)
return tsne_embeddings
def get_umap_embeddings(embeddings):
embeddings = np.array(embeddings)
umap_model = umap.UMAP(n_components=2, random_state=42, n_neighbors=15, metric='euclidean') # default parameters for UMAP
umap_embeddings = umap_model.fit_transform(embeddings)
return umap_embeddings
def plot_half_filled_circle(ax, x, y, left_color, right_color, size=100):
"""
Plots a circle filled in halves with specified colors.
Parameters:
- ax: Matplotlib axis to draw on.
- x, y: Coordinates of the marker.
- left_color: Color of the left half.
- right_color: Color of the right half.
- size: Size of the marker.
"""
radius = (size ** 0.5) / 100 # Scale the radius
# Create left half-circle (0° to 180°)
left_half = patches.Wedge((x, y), radius, 90, 270, color=left_color, ec="black")
# Create right half-circle (180° to 360°)
right_half = patches.Wedge((x, y), radius, 270, 90, color=right_color, ec="black")
# Add both halves to the plot
ax.add_patch(left_half)
ax.add_patch(right_half)
def plot_umap_scatter_tftf_kk(df, filename="umap.png"):
"""
Plots a 2D scatterplot of UMAP coordinates with different markers and colors based on 'type'.
Only for TF::TF and Kinase::Kinase fusions
Parameters:
- df (pd.DataFrame): DataFrame containing 'umap1', 'umap2', 'sequence', and 'type' columns.
"""
set_font()
# Define colors for each type
colors = {
"TF": "pink",
"Kinase": "orange"
}
# Define marker types and colors for each combination
marker_colors = {
"TF::TF": colors["TF"],
"Kinase::Kinase": colors["Kinase"],
}
# Create the plot
fig, ax = plt.subplots(figsize=(10, 8))
x_min, x_max = df["umap1"].min() - 1, df["umap1"].max() + 1
y_min, y_max = df["umap2"].min() - 1, df["umap2"].max() + 1
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
# Plot each point with the specified half-filled marker
for i in range(len(df)):
row = df.iloc[i]
marker_type = row["fusion_type"]
x, y = row["umap1"], row["umap2"]
color = marker_colors[marker_type]
ax.scatter(x, y, color=color, s=15, edgecolors="black", linewidth=0.5)
# Add custom legend
legend_elements = [
patches.Patch(facecolor="pink", edgecolor="black", label="TF::TF"),
patches.Patch(facecolor="orange", edgecolor="black", label="Kinase::Kinase")
]
ax.legend(handles=legend_elements, title="Fusion Type", fontsize=16, title_fontsize=16)
# Add labels and title
plt.xlabel("UMAP 1", fontsize=20)
plt.ylabel("UMAP 2", fontsize=20)
plt.title("FusOn-pLM-embedded Transcription Factor and Kinase Fusions", fontsize=20)
plt.tight_layout()
# Save and show the plot
plt.savefig(filename, dpi=300)
plt.show()
def plot_umap_scatter_half_filled(df, filename="umap.png"):
"""
Plots a 2D scatterplot of UMAP coordinates with different markers and colors based on 'type'.
Parameters:
- df (pd.DataFrame): DataFrame containing 'umap1', 'umap2', 'sequence', and 'type' columns.
"""
# Define colors for each type
colors = {
"TF": "pink",
"Kinase": "orange",
"Other": "grey"
}
# Define marker types and colors for each combination
marker_colors = {
"TF::TF": {"left": colors["TF"], "right": colors["TF"]},
"TF::Other": {"left": colors["TF"], "right": colors["Other"]},
"Other::TF": {"left": colors["Other"], "right": colors["TF"]},
"Kinase::Kinase": {"left": colors["Kinase"], "right": colors["Kinase"]},
"Kinase::Other": {"left": colors["Kinase"], "right": colors["Other"]},
"Other::Kinase": {"left": colors["Other"], "right": colors["Kinase"]},
"Kinase::TF": {"left": colors["Kinase"], "right": colors["TF"]},
"TF::Kinase": {"left": colors["TF"], "right": colors["Kinase"]},
"Other::Other": {"left": colors["Other"], "right": colors["Other"]}
}
# Create the plot
fig, ax = plt.subplots(figsize=(10, 8))
x_min, x_max = df["umap1"].min() - 1, df["umap1"].max() + 1
y_min, y_max = df["umap2"].min() - 1, df["umap2"].max() + 1
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
# Plot each point with the specified half-filled marker
for i in range(len(df)):
row = df.iloc[i]
marker_type = row["fusion_type"]
x, y = row["umap1"], row["umap2"]
left_color = marker_colors[marker_type]["left"]
right_color = marker_colors[marker_type]["right"]
plot_half_filled_circle(ax, x, y, left_color, right_color, size=100)
# Add custom legend
legend_elements = [
patches.Patch(facecolor="pink", edgecolor="black", label="TF"),
patches.Patch(facecolor="orange", edgecolor="black", label="Kinase"),
patches.Patch(facecolor="grey", edgecolor="black", label="Other")
]
ax.legend(handles=legend_elements, title="Type")
# Add labels and title
plt.xlabel("UMAP 1")
plt.ylabel("UMAP 2")
plt.title("UMAP Scatter Plot")
plt.tight_layout()
# Save and show the plot
plt.savefig(filename, dpi=300)
plt.show()
def get_gene_type(gene, d):
if gene in d:
if d[gene] == 'kinase':
return 'Kinase'
if d[gene] == 'tf':
return 'TF'
else:
return 'Other'
def get_tf_and_kinase_fusions_dataset():
# Load TF and Kinase Fusions
tf_kinase_parts = pd.read_csv("data/salokas_2020_tableS3.csv")
print(tf_kinase_parts)
ht_tf_kinase_dict = dict(zip(tf_kinase_parts['Gene'],tf_kinase_parts['Kinase or TF']))
# This one has each row with one fusiongene name
fuson_ht_db = pd.read_csv("../../data/blast/fuson_ht_db.csv")
fuson_ht_db[['hg','tg']] = fuson_ht_db['fusiongenes'].str.split("::",expand=True)
fuson_ht_db['hg_type'] = fuson_ht_db['hg'].apply(lambda x: get_gene_type(x, ht_tf_kinase_dict))
fuson_ht_db['tg_type'] = fuson_ht_db['tg'].apply(lambda x: get_gene_type(x, ht_tf_kinase_dict))
fuson_ht_db['fusion_type'] = fuson_ht_db['hg_type']+'::'+fuson_ht_db['tg_type']
fuson_ht_db['type']=['fusion']*len(fuson_ht_db)
# Keep 100 things in each category
categories = pd.DataFrame(fuson_ht_db['fusion_type'].value_counts()).reset_index()['index'].tolist()
categories = ["TF::TF","Kinase::Kinase"] # manually set some easier categories
print(categories)
plot_df = None
for i, cat in enumerate(categories):
random_sample = fuson_ht_db.loc[fuson_ht_db['fusion_type']==cat].reset_index(drop=True)
#random_sample = random_sample.sample(n=100, random_state=1).reset_index(drop=True)
if i==0:
plot_df = random_sample
else:
plot_df = pd.concat([plot_df,random_sample],axis=0).reset_index(drop=True)
print(plot_df['fusion_type'].value_counts())
# Now, need to add in the embeddings
plot_df = plot_df[['aa_seq','fusiongenes','fusion_type','type']].rename(
columns={'aa_seq':'sequence','fusiongenes':'ID'}
)
return plot_df
def make_tf_and_kinase_fusions_plot(seqs_with_embeddings, savedir = '', dimred_type='umap'):
fuson_db = pd.read_csv("../../data/fuson_db.csv")
seq_id_dict = dict(zip(fuson_db['aa_seq'],fuson_db['seq_id']))
# add sequences so we can save results/sequence
data = seqs_with_embeddings[[f'{dimred_type}1',f'{dimred_type}2','sequence','fusion_type','ID']]
data['seq_id'] = data['sequence'].map(seq_id_dict)
tfkinase_save_dir = f"{savedir}"
os.makedirs(tfkinase_save_dir,exist_ok=True)
data.to_csv(f"{tfkinase_save_dir}/{dimred_type}_tf_and_kinase_fusions_source_data.csv",index=False)
plot_umap_scatter_tftf_kk(data,filename=f"{tfkinase_save_dir}/{dimred_type}_tf_and_kinase_fusions_visualization.png")
def tf_and_kinase_fusions_plot(dimred_types, output_dir):
"""
Makes the embeddings, THEN calls the plot. only on the four favorites
"""
plot_df = get_tf_and_kinase_fusions_dataset()
plot_df.to_csv("data/tf_and_kinase_fusions.csv",index=False)
# path to the pkl file with FOdb embeddings
input_fname='tf_and_kinase'
all_embedding_paths = embed_dataset_for_benchmark(
fuson_ckpts=config.FUSON_PLM_CKPT,
input_data_path='data/tf_and_kinase_fusions.csv', input_fname=input_fname,
average=True, seq_col='sequence',
benchmark_fusonplm=True,
benchmark_esm=False,
benchmark_fo_puncta_ml=False,
overwrite=config.PERMISSION_TO_OVERWRITE)
# For each of the models we are benchmarking, load embeddings and make plots
log_update("\nEmbedding sequences")
# loop through the embedding paths and train each one
for embedding_path, details in all_embedding_paths.items():
log_update(f"\tBenchmarking embeddings at: {embedding_path}")
try:
with open(embedding_path, "rb") as f:
embeddings = pickle.load(f)
except:
raise Exception(f"Cannot read embeddings from {embedding_path}")
# combine the embeddings and splits into one dataframe
seqs_with_embeddings = pd.DataFrame.from_dict(embeddings.items())
seqs_with_embeddings = seqs_with_embeddings.rename(columns={0: 'sequence', 1: 'embedding'}) # the column that was called FusOn-pLM is now called embedding
seqs_with_embeddings = pd.merge(seqs_with_embeddings, plot_df, on='sequence', how='inner')
# get UMAP transform of the embeddings
for dimred_type in dimred_types:
dimred_embeddings = get_dimred_embeddings(seqs_with_embeddings['embedding'].tolist(),dimred_type=dimred_type)
# turn the result into a dataframe, and add it to seqs_with_embeddings
data = pd.DataFrame(dimred_embeddings, columns=[f'{dimred_type}1', f'{dimred_type}2'])
# save the umap data!
model_name = "_".join(embedding_path.split('embeddings/')[1].split('/')[1:-1])
seqs_with_embeddings[[f'{dimred_type}1', f'{dimred_type}2']] = data
# make subdirectory
intermediate = '/'.join(embedding_path.split('embeddings/')[1].split('/')[0:-1])
cur_output_dir = f"{output_dir}/{dimred_type}_plots/{intermediate}/{input_fname}"
os.makedirs(cur_output_dir,exist_ok=True)
make_tf_and_kinase_fusions_plot(seqs_with_embeddings, savedir = cur_output_dir, dimred_type=dimred_type)
def make_fusion_v_parts_favorites_plot(seqs_with_embeddings, savedir = None, dimred_type='umap'):
"""
Make plots showing that PAX3::FOXO1, EWS::FLI1, SS18::SSX1, EML4::ALK are embedded distinctly from their heads and tails
"""
set_font()
# Load one sequence each for four proteins in the test set: PAX3::FOXO1, EWS::FLI1, SS18::SSX1, EML4::ALK
data = pd.read_csv("data/top_genes.csv")
seqs_with_embeddings = pd.merge(seqs_with_embeddings, data, on="sequence")
seqs_with_embeddings["Type"] = [""]*len(seqs_with_embeddings)
seqs_with_embeddings.loc[
seqs_with_embeddings["gene"].str.contains("::"),"Type"
] = "fusion_embeddings"
heads = seqs_with_embeddings.loc[seqs_with_embeddings["gene"].str.contains("::")]["gene"].str.split("::",expand=True)[0].tolist()
tails = seqs_with_embeddings.loc[seqs_with_embeddings["gene"].str.contains("::")]["gene"].str.split("::",expand=True)[1].tolist()
seqs_with_embeddings.loc[
seqs_with_embeddings["gene"].isin(heads),"Type"
] = "h_embeddings"
seqs_with_embeddings.loc[
seqs_with_embeddings["gene"].isin(tails),"Type"
] = "t_embeddings"
# make merge
merge = seqs_with_embeddings.loc[seqs_with_embeddings['gene'].str.contains('::')].reset_index(drop=True)[['gene','sequence']]
merge["head"] = merge["gene"].str.split("::",expand=True)[0]
merge["tail"] = merge["gene"].str.split("::",expand=True)[1]
merge = pd.merge(merge, seqs_with_embeddings[['gene','sequence']].rename(
columns={'gene': 'head', 'sequence': 'h_sequence'}),
on='head',how='left'
)
merge = pd.merge(merge, seqs_with_embeddings[['gene','sequence']].rename(
columns={'gene': 'tail', 'sequence': 't_sequence'}),
on='tail',how='left'
)
plt.figure()
# Define colors and markers
colors = {
'fusion_embeddings': '#cf9dfa', # old color #0C4A4D
'h_embeddings': '#eb8888', # Updated to original names; old color #619283
't_embeddings': '#5fa3e3', # Updated to original names; old color #619283
}
markers = {
'fusion_embeddings': 'o',
'h_embeddings': '^', # Updated to original names
't_embeddings': 'v' # Updated to original names
}
label_map = {
'fusion_embeddings': 'Fusion',
'h_embeddings': 'Head', # Updated label
't_embeddings': 'Tail', # Updated label
}
# Create a 2x3 grid of plots
fig, axes = plt.subplots(2, 3, figsize=(18, 12))
#fig, axes = plt.subplots(1, 4, figsize= (18, 7))
# Get the global min and max for the x and y axis ranges
all_tsne1 = seqs_with_embeddings[f'{dimred_type}1']
all_tsne2 = seqs_with_embeddings[f'{dimred_type}2']
x_min, x_max = all_tsne1.min(), all_tsne1.max()
y_min, y_max = all_tsne2.min(), all_tsne2.max()
x_min, x_max = [11, 16] # manually set range for cleaner plotting
y_min, y_max = [10, 22]
# Determine tick positions
x_ticks = np.arange(x_min, x_max + 1, 1)
y_ticks = np.arange(y_min, y_max + 1, 1)
# Flatten the axes array for easier iteration
axes = axes.flatten()
for i, ax in enumerate(axes):
# Extract the gene names from the current row
fgene_name = merge.loc[i, 'gene']
hgene = merge.loc[i, 'head']
tgene = merge.loc[i, 'tail']
# Filter tsne_embeddings for the relevant entries
tsne_data = seqs_with_embeddings[seqs_with_embeddings['gene'].isin([fgene_name, hgene, tgene])]
# Plot each type
for emb_type in tsne_data['Type'].unique():
subset = tsne_data[tsne_data['Type'] == emb_type]
ax.scatter(subset[f'{dimred_type}1'], subset[f'{dimred_type}2'], label=label_map[emb_type], color=colors[emb_type], marker=markers[emb_type], s=120, zorder=3)
ax.set_title(f'{fgene_name}',fontsize=44)
label_transform = {
'tsne': 't-SNE',
'umap': 'UMAP'
}
ax.set_xlabel(f'{label_transform[dimred_type]} 1',fontsize=44)
ax.set_ylabel(f'{label_transform[dimred_type]} 2',fontsize=44)
ax.grid(True, which='both', linestyle='--', linewidth=0.5, color='gray', zorder=1)
# Set the same limits and ticks for all axes
ax.set_xlim(x_min, x_max)
ax.set_ylim(y_min, y_max)
ax.set_xticks(x_ticks)#\\, labelsize=24)
ax.set_yticks(y_ticks)#, labelsize=24)
# Rotate x-axis labels
ax.set_xticklabels(ax.get_xticks(), rotation=45, ha='right')
ax.tick_params(axis='x', labelsize=16)
ax.tick_params(axis='y', labelsize=16)
for label in ax.get_xticklabels():
label.set_fontsize(24)
for label in ax.get_yticklabels():
label.set_fontsize(24)
# Set font size for the legend if needed
if i == 0:
legend = ax.legend(fontsize=20, markerscale=2, loc='best')
for text in legend.get_texts():
text.set_fontsize(24)
# Adjust layout to prevent overlap
plt.tight_layout()
# Show the plot
plt.show()
# Save the figure
plt.savefig(f'{savedir}/{dimred_type}_favorites_visualization.png', dpi=300)
# Save the data
seq_to_id_dict = pd.read_csv("../../data/fuson_db.csv")
seq_to_id_dict = dict(zip(seq_to_id_dict['aa_seq'],seq_to_id_dict['seq_id']))
seqs_with_embeddings['seq_id'] = seqs_with_embeddings['sequence'].map(seq_to_id_dict)
seqs_with_embeddings[['umap1','umap2','sequence','Type','gene','id','seq_id']].to_csv(f"{savedir}/{dimred_type}_favorites_source_data.csv",index=False)
def fusion_v_parts_favorites(dimred_types, output_dir):
"""
Makes the embeddings, THEN calls the plot. only on the four favorites
"""
# path to the pkl file with FOdb embeddings
input_fname='favorites'
all_embedding_paths = embed_dataset_for_benchmark(
fuson_ckpts=config.FUSON_PLM_CKPT,
input_data_path='data/top_genes.csv', input_fname=input_fname,
average=True, seq_col='sequence',
benchmark_fusonplm=True,
benchmark_esm=False,
benchmark_fo_puncta_ml=False,
overwrite=config.PERMISSION_TO_OVERWRITE)
# For each of the models we are benchmarking, load embeddings and make plots
log_update("\nEmbedding sequences")
# loop through the embedding paths and train each one
for embedding_path, details in all_embedding_paths.items():
log_update(f"\tBenchmarking embeddings at: {embedding_path}")
try:
with open(embedding_path, "rb") as f:
embeddings = pickle.load(f)
except:
raise Exception(f"Cannot read embeddings from {embedding_path}")
# combine the embeddings and splits into one dataframe
seqs_with_embeddings = pd.DataFrame.from_dict(embeddings.items())
seqs_with_embeddings = seqs_with_embeddings.rename(columns={0: 'sequence', 1: 'embedding'}) # the column that was called FusOn-pLM is now called embedding
# get UMAP transform of the embeddings
for dimred_type in dimred_types:
dimred_embeddings = get_dimred_embeddings(seqs_with_embeddings['embedding'].tolist(),dimred_type=dimred_type)
# turn the result into a dataframe, and add it to seqs_with_embeddings
data = pd.DataFrame(dimred_embeddings, columns=[f'{dimred_type}1', f'{dimred_type}2'])
# save the umap data!
model_name = "_".join(embedding_path.split('embeddings/')[1].split('/')[1:-1])
seqs_with_embeddings[[f'{dimred_type}1', f'{dimred_type}2']] = data
# make subdirectory
intermediate = '/'.join(embedding_path.split('embeddings/')[1].split('/')[0:-1])
cur_output_dir = f"{output_dir}/{dimred_type}_plots/{intermediate}/{input_fname}"
os.makedirs(cur_output_dir,exist_ok=True)
make_fusion_v_parts_favorites_plot(seqs_with_embeddings, savedir = cur_output_dir, dimred_type=dimred_type)
def main():
# make directory to save results
os.makedirs('results',exist_ok=True)
output_dir = f'results/{get_local_time()}'
os.makedirs(output_dir,exist_ok=True)
dimred_types = []
if config.PLOT_UMAP:
dimred_types.append("umap")
#os.makedirs(f"{output_dir}/umap_data",exist_ok=True)
os.makedirs(f"{output_dir}/umap_plots",exist_ok=True)
if config.PLOT_TSNE:
dimred_types.append("tsne")
#os.makedirs(f"{output_dir}/tsne_data",exist_ok=True)
os.makedirs(f"{output_dir}/tsne_plots",exist_ok=True)
with open_logfile(f'{output_dir}/embedding_exploration_log.txt'):
print_configpy(config)
# make the disinct embeddings plot
fusion_v_parts_favorites(dimred_types, output_dir)
tf_and_kinase_fusions_plot(dimred_types, output_dir)
if __name__ == "__main__":
main() |