File size: 13,981 Bytes
c43fbc6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
# Python file for making embeddings from a FusOn-pLM model for any dataset
from fuson_plm.utils.embedding import get_esm_embeddings, load_esm2_type, redump_pickle_dictionary, load_prott5, get_prott5_embeddings
from fuson_plm.utils.logging import log_update, open_logfile, print_configpy
from fuson_plm.utils.data_cleaning import find_invalid_chars
from fuson_plm.utils.constants import VALID_AAS
from fuson_plm.training.model import FusOnpLM
from transformers import AutoModelForMaskedLM, AutoTokenizer, AutoModel
import logging
import torch
import pickle
import os
import pandas as pd
import numpy as np
def validate_sequence_col(df, seq_col):
# if column isn't there, error
if seq_col not in list(df.columns):
raise Exception("Error: provided sequence column does not exist in the input dataframe")
# if column contains invalid characters, error
df['invalid_chars'] = df[seq_col].apply(lambda x: find_invalid_chars(x, VALID_AAS))
all_invalid_chars = set().union(*df['invalid_chars'])
df = df.drop(columns=['invalid_chars'])
if len(all_invalid_chars)>0:
raise Exception(f"Error: invalid characters {all_invalid_chars} found in the sequence column")
# make sure there are no duplicates
sequences = df[seq_col]
if len(set(sequences))<len(sequences): log_update("\tWARNING: input data has duplicate sequences")
def load_fuson_model(ckpt_path):
# Suppress warnings about newly initialized 'esm.pooler.dense.bias', 'esm.pooler.dense.weight' layers - these are not used to extract embeddings
logging.getLogger("transformers.modeling_utils").setLevel(logging.ERROR)
# Set device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using device: {device}")
# Load model
model = AutoModel.from_pretrained(ckpt_path) # initialize model
tokenizer = AutoTokenizer.from_pretrained(ckpt_path) # initialize tokenizer
# Model to device and in eval mode
model.to(device)
model.eval() # disables dropout for deterministic results
return model, tokenizer, device
def get_fuson_embeddings(model, tokenizer, sequences, device, average=True, print_updates=False, savepath=None, save_at_end=False, max_length=2000):
# Correct save path to pickle if necessary
if savepath is not None:
if savepath[-4::] != '.pkl': savepath += '.pkl'
if print_updates: log_update(f"Dataset contains {len(sequences)} sequences.")
# If no max length was passed, just set it to the maximum in the dataset
max_seq_len = max([len(s) for s in sequences])
if max_length is None: max_length=max_seq_len+2 # add 2 for BOS, EOS
# Initialize an empty dict to store the ESM embeddings
embedding_dict = {}
# Iterate through the seqs
for i in range(len(sequences)):
sequence = sequences[i]
# Get the embeddings
with torch.no_grad():
# Tokenize the input sequence
inputs = tokenizer(sequence, return_tensors="pt", padding=True, truncation=True,max_length=max_length)
inputs = {k: v.to(device) for k, v in inputs.items()}
outputs = model(**inputs)
# The embeddings are in the last_hidden_state tensor
embedding = outputs.last_hidden_state
# remove extra dimension
embedding = embedding.squeeze(0)
# remove BOS and EOS tokens
embedding = embedding[1:-1, :]
# Convert embeddings to numpy array (if needed)
embedding = embedding.cpu().numpy()
# Average (if necessary)
if average:
embedding = embedding.mean(0)
# Add to dictionary
embedding_dict[sequence] = embedding
# Save individual embedding (if necessary)
if not(savepath is None) and not(save_at_end):
with open(savepath, 'ab+') as f:
d = {sequence: embedding}
pickle.dump(d, f)
# Print update (if necessary)
if print_updates: log_update(f"sequence {i+1}: {sequence[0:10]}...")
# Dump all at once at the end (if necessary)
if not(savepath is None):
# If saving for the first time, just dump it
if save_at_end:
with open(savepath, 'wb') as f:
pickle.dump(embedding_dict, f)
# If we've been saving all along and made it here without crashing, correct the pickle file so it can be loaded nicely
else:
redump_pickle_dictionary(savepath)
def embed_dataset(path_to_file, path_to_output, seq_col='aa_seq', model_type='fuson_plm', fuson_ckpt_path = None, average=True, overwrite=True, print_updates=False,max_length=2000):
# Make sure we aren't overwriting pre-existing embeddings
if os.path.exists(path_to_output):
if overwrite:
log_update(f"WARNING: these embeddings may already exist at {path_to_output} and will be overwritten")
else:
log_update(f"WARNING: these embeddings may already exist at {path_to_output}. Skipping.")
return None
dataset = pd.read_csv(path_to_file)
# Make sure the sequence column is valid
validate_sequence_col(dataset, seq_col)
sequences = dataset[seq_col].unique().tolist() # ensure all entries are unique
### If FusOn-pLM: make fusion embeddings
if model_type=='fuson_plm':
if not(os.path.exists(fuson_ckpt_path)): raise Exception("FusOn-pLM ckpt path does not exist")
# Load model
try:
model, tokenizer, device = load_fuson_model(fuson_ckpt_path)
except:
raise Exception(f"Could not load FusOn-pLM from {fuson_ckpt_path}")
# Generate embeddigns
try:
get_fuson_embeddings(model, tokenizer, sequences, device, average=average,
print_updates=print_updates, savepath=path_to_output, save_at_end=False,
max_length=max_length)
except:
raise Exception("Could not generate FusOn-pLM embeddings")
if model_type=='esm2_t33_650M_UR50D':
# Load model
try:
model, tokenizer, device = load_esm2_type(model_type)
except:
raise Exception(f"Could not load {model_type}")
# Generate embeddings
try:
get_esm_embeddings(model, tokenizer, sequences, device, average=average,
print_updates=print_updates, savepath=path_to_output, save_at_end=False,
max_length=max_length)
except:
raise Exception(f"Could not generate {model_type} embeddings")
if model_type=="prot_t5_xl_half_uniref50_enc":
# Load model
try:
model, tokenizer, device = load_prott5()
except:
raise Exception(f"Could not load {model_type}")
# Generate embeddings
try:
get_prott5_embeddings(model, tokenizer, sequences, device, average=average,
print_updates=print_updates, savepath=path_to_output, save_at_end=False,
max_length=max_length)
except:
raise Exception(f"Could not generate {model_type} embeddings")
def embed_dataset_for_benchmark(fuson_ckpts=None, input_data_path=None, input_fname=None, average=True, seq_col='seq', benchmark_fusonplm=False, benchmark_esm=False, benchmark_fo_puncta_ml=False, benchmark_prott5=False, overwrite=False,max_length=None):
# make directory for embeddings inside benchmarking dataset if one doesn't already eist
os.makedirs('embeddings',exist_ok=True)
# Extract input file name from configs
emb_type_tag ='average' if average else '2D'
all_embedding_paths = dict() # dictionary organized where embedding path points to model, epoch
# make the embedding files. Put them in an embedding directory
if benchmark_fusonplm:
os.makedirs('embeddings/fuson_plm',exist_ok=True)
log_update(f"\nMaking Fuson-PLM embeddings")
# make subdirs for all the
if type(fuson_ckpts)==dict:
for model_name, epoch_list in fuson_ckpts.items():
os.makedirs(f'embeddings/fuson_plm/{model_name}',exist_ok=True)
for epoch in epoch_list:
# Assemble ckpt path and throw error if it doesn't exist
fuson_ckpt_path = f'../../training/checkpoints/{model_name}/checkpoint_epoch_{epoch}'
if not(os.path.exists(fuson_ckpt_path)): raise Exception(f"Error. Cannot find ckpt path: {fuson_ckpt_path}")
# Make output directory and output embedding path
embedding_output_dir = f'embeddings/fuson_plm/{model_name}/epoch{epoch}'
embedding_output_path = f'{embedding_output_dir}/{input_fname}_{emb_type_tag}_embeddings.pkl'
os.makedirs(embedding_output_dir,exist_ok=True)
# Make dictionary item
model_type = 'fuson_plm'
all_embedding_paths[embedding_output_path] = {
'model_type': model_type,
'model': model_name,
'epoch': epoch
}
# Create embeddings (or skip if they're already made)
log_update(f"\tUsing ckpt {fuson_ckpt_path} and saving results to {embedding_output_path}...")
embed_dataset(input_data_path, embedding_output_path,
seq_col=seq_col, model_type=model_type,
fuson_ckpt_path=fuson_ckpt_path, average=average,
overwrite=overwrite,print_updates=True,
max_length=max_length)
elif fuson_ckpts=="FusOn-pLM":
model_name = "best"
os.makedirs(f'embeddings/fuson_plm/{model_name}',exist_ok=True)
# Assemble ckpt path and throw error if it doesn't exist
fuson_ckpt_path = "../../.." # go back to the FusOn-pLM directory to find the best ckpt
if not(os.path.exists(fuson_ckpt_path)): raise Exception(f"Error. Cannot find ckpt path: {fuson_ckpt_path}")
# Make output directory and output embedding path
embedding_output_dir = f'embeddings/fuson_plm/{model_name}'
embedding_output_path = f'{embedding_output_dir}/{input_fname}_{emb_type_tag}_embeddings.pkl'
os.makedirs(embedding_output_dir,exist_ok=True)
# Make dictionary item
model_type = 'fuson_plm'
all_embedding_paths[embedding_output_path] = {
'model_type': model_type,
'model': model_name,
'epoch': None
}
# Create embeddings (or skip if they're already made)
log_update(f"\tUsing ckpt {fuson_ckpt_path} and saving results to {embedding_output_path}...")
embed_dataset(input_data_path, embedding_output_path,
seq_col=seq_col, model_type=model_type,
fuson_ckpt_path=fuson_ckpt_path, average=average,
overwrite=overwrite,print_updates=True,
max_length=max_length)
else:
raise Exception(f"Error. fuson_ckpts should be a dict or str")
# make the embedding files. Put them in an embedding directory
if benchmark_esm:
os.makedirs('embeddings/esm2_t33_650M_UR50D',exist_ok=True)
# make output path
embedding_output_path = f'embeddings/esm2_t33_650M_UR50D/{input_fname}_{emb_type_tag}_embeddings.pkl'
# Make dictioary item
model_type = 'esm2_t33_650M_UR50D'
all_embedding_paths[embedding_output_path] = {
'model_type': model_type,
'model': model_type,
'epoch': np.nan
}
log_update(f"\nMaking ESM-2-650M embeddings for {input_data_path} and saving results to {embedding_output_path}...")
embed_dataset(input_data_path, embedding_output_path,
seq_col=seq_col, model_type=model_type,
fuson_ckpt_path = None, average=average,
overwrite=overwrite,print_updates=True,
max_length=max_length)
if benchmark_prott5:
os.makedirs('embeddings/prot_t5_xl_half_uniref50_enc',exist_ok=True)
# make output path
embedding_output_path = f'embeddings/prot_t5_xl_half_uniref50_enc/{input_fname}_{emb_type_tag}_embeddings.pkl'
# Make dictioary item
model_type = 'prot_t5_xl_half_uniref50_enc'
all_embedding_paths[embedding_output_path] = {
'model_type': model_type,
'model': model_type,
'epoch': np.nan
}
log_update(f"\nMaking ProtT5-XL-UniRef50 embeddings for {input_data_path} and saving results to {embedding_output_path}...")
embed_dataset(input_data_path, embedding_output_path,
seq_col=seq_col, model_type=model_type,
fuson_ckpt_path = None, average=average,
overwrite=overwrite,print_updates=True,
max_length=max_length)
if benchmark_fo_puncta_ml:
embedding_output_path =f'FOdb_physicochemical_embeddings.pkl'
# Make dictionary item
all_embedding_paths[embedding_output_path] = {
'model_type': 'fo_puncta_ml',
'model': 'fo_puncta_ml',
'epoch': np.nan
}
return all_embedding_paths |