File size: 6,052 Bytes
5a87d8d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
import numpy as np
import torch
import random
import matplotlib
import matplotlib.pyplot as plt
import math
import umap
import scanpy as sc
from sklearn.decomposition import PCA

import ot as pot
from tqdm import tqdm
from functools import partial
from typing import Optional

from matplotlib.colors import LinearSegmentedColormap


def set_seed(seed):
    """
    Sets the seed for reproducibility in PyTorch, Numpy, and Python's Random.

    Parameters:
    seed (int): The seed for the random number generators.
    """
    random.seed(seed)  # Python random module
    np.random.seed(seed)  # Numpy
    torch.manual_seed(seed)  # CPU and GPU (deterministic)
    if torch.cuda.is_available():
        torch.cuda.manual_seed(seed)  # CUDA
        torch.cuda.manual_seed_all(seed)  # all GPU devices
        torch.backends.cudnn.deterministic = True  # CuDNN behavior
        torch.backends.cudnn.benchmark = False


def wasserstein_distance(
    x0: torch.Tensor,
    x1: torch.Tensor,
    method: Optional[str] = None,
    reg: float = 0.05,
    power: int = 1,
    **kwargs,
) -> float:
    assert power == 1 or power == 2
    if method == "exact" or method is None:
        ot_fn = pot.emd2
    elif method == "sinkhorn":
        ot_fn = partial(pot.sinkhorn2, reg=reg)
    else:
        raise ValueError(f"Unknown method: {method}")

    a, b = pot.unif(x0.shape[0]), pot.unif(x1.shape[0])
    if x0.dim() > 2:
        x0 = x0.reshape(x0.shape[0], -1)
    if x1.dim() > 2:
        x1 = x1.reshape(x1.shape[0], -1)
    M = torch.cdist(x0, x1)
    if power == 2:
        M = M**2
    ret = ot_fn(a, b, M.detach().cpu().numpy(), numItermax=1e7)
    if power == 2:
        ret = math.sqrt(ret)
    return ret


def plot_lidar(ax, dataset, xs=None, S=25, branch_idx=None):
    # Combine the dataset and trajectory points for sorting
    combined_points = []
    combined_colors = []
    combined_sizes = []
    
    
    custom_colors_1 = ["#05009E", "#A19EFF", "#50B2D7"]
    custom_colors_2 = ["#05009E", "#A19EFF", "#D577FF"]
    
    custom_cmap_1 = LinearSegmentedColormap.from_list("my_cmap", custom_colors_1)
    custom_cmap_2 = LinearSegmentedColormap.from_list("my_cmap", custom_colors_2)

    # Normalize the z-coordinates for alpha scaling
    z_coords = (
        dataset[:, 2].numpy() if torch.is_tensor(dataset[:, 2]) else dataset[:, 2]
    )
    z_min, z_max = z_coords.min(), z_coords.max()
    z_norm = (z_coords - z_min) / (z_max - z_min)

    # Add surface points with a lower z-order
    for i, point in enumerate(dataset):
        grey_value = 0.95 - 0.7 * z_norm[i]
        combined_points.append(point.numpy())
        combined_colors.append(
            (
                grey_value,
                grey_value,
                grey_value,
                1.0
            )
        )  # Grey color with transparency
        combined_sizes.append(0.1)

    # Add trajectory points with a higher z-order
    if xs is not None:
        if branch_idx == 0:
            cmap = custom_cmap_1
        else:
            cmap = custom_cmap_2
            
        B, T, D = xs.shape
        steps_to_log = np.linspace(0, T - 1, S).astype(int)
        xs = xs.cpu().detach().clone()
        for idx, step in enumerate(steps_to_log):
            for point in xs[:512, step]:
                combined_points.append(
                    point.numpy() if torch.is_tensor(point) else point
                )
                combined_colors.append(cmap(idx / (len(steps_to_log) - 1)))
                combined_sizes.append(0.8)

    # Convert to numpy array for easier manipulation
    combined_points = np.array(combined_points)
    combined_colors = np.array(combined_colors)
    combined_sizes = np.array(combined_sizes)

    # Sort by z-coordinate (depth)
    sorted_indices = np.argsort(combined_points[:, 2])
    combined_points = combined_points[sorted_indices]
    combined_colors = combined_colors[sorted_indices]
    combined_sizes = combined_sizes[sorted_indices]

    # Plot the sorted points
    ax.scatter(
        combined_points[:, 0],
        combined_points[:, 1],
        combined_points[:, 2],
        s=combined_sizes,
        c=combined_colors,
        depthshade=True,
    )

    ax.set_xlim3d(left=-4.8, right=4.8)
    ax.set_ylim3d(bottom=-4.8, top=4.8)
    ax.set_zlim3d(bottom=0.0, top=2.0)
    ax.set_zticks([0, 1.0, 2.0])
    ax.grid(False)
    plt.axis("off")

    return ax


def plot_images_trajectory(trajectories, vae, processor, num_steps):

    # Compute trajectories for each image
    t_span = torch.linspace(0, trajectories.shape[1] - 1, num_steps)
    t_span = [int(t) for t in t_span]
    num_images = trajectories.shape[0]

    # Decode images at each step in each trajectory
    decoded_images = [
        [
            processor.postprocess(
                vae.decode(
                    trajectories[i_image, traj_step].unsqueeze(0)
                ).sample.detach()
            )[0]
            for traj_step in t_span
        ]
        for i_image in range(num_images)
    ]

    # Plotting
    fig, axes = plt.subplots(
        num_images, num_steps, figsize=(num_steps * 2, num_images * 2)
    )
    if num_images == 1:
        axes = [axes]  # Ensure axes is iterable
    for img_idx, img_traj in enumerate(decoded_images):
        for step_idx, img in enumerate(img_traj):
            ax = axes[img_idx][step_idx] if num_images > 1 else axes[step_idx]
            if (
                isinstance(img, np.ndarray) and img.shape[0] == 3
            ):  # Assuming 3 channels (RGB)
                img = img.transpose(1, 2, 0)
            ax.imshow(img)
            ax.axis("off")
            if img_idx == 0:
                ax.set_title(f"t={t_span[step_idx]/t_span[-1]:.2f}")
    plt.tight_layout()
    return fig


def plot_growth(dataset, growth_nets, xs, output_file='plot.pdf'):
    x0s = [dataset["x0"][0]]
    w0s = [dataset["x0"][1]]
    x1s_list = [[dataset["x1_1"][0]], [dataset["x1_2"][0]]]
    w1s_list = [[dataset["x1_1"][1]], [dataset["x1_2"][1]]] 
    
    
    
    plt.show()