File size: 8,442 Bytes
5d71f88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
import typing
from collections.abc import Callable
from collections import defaultdict
from typing import Any, Dict, TYPE_CHECKING, Optional, Tuple, List

import torch
import copy

from torch import Tensor
from torch.nn import Module
import torch.nn.functional as F

if TYPE_CHECKING:
    Base = Module[Tensor]
else:
    Base = Module


MOE_TOP_K = 2
Constant = 2


class CopyExpert(torch.nn.Module):
    def __init__(self, expert):
        super(CopyExpert, self).__init__()
        pass

    def forward(self, inputs):
        return inputs


class ZeroExpert(torch.nn.Module):
    def __init__(self, expert):
        super(ZeroExpert, self).__init__()
        pass

    def forward(self, inputs):
        return torch.zeros_like(inputs).to(inputs.dtype).to(inputs.device)


class ConstantExpert(torch.nn.Module):
    def __init__(self, expert):
        super(ConstantExpert, self).__init__()
        self.constant = torch.nn.Parameter(
            torch.empty((expert.hidden_size)))
        torch.nn.init.normal_(self.constant)

        self.wg = torch.nn.Linear(expert.hidden_size, 2, bias=False)
        self.softmax = torch.nn.Softmax(dim=-1)

    def forward(self, inputs):
        # print(inputs.size())
        weight = self.wg(inputs)
        weight = self.softmax(weight)
        return torch.einsum('b,bd->bd', [weight[:, 0].type_as(inputs), inputs]) + torch.einsum(
                'b,d->bd', [weight[:, 1].type_as(inputs), self.constant.type_as(inputs)])


def gating(logits: Tensor, moe_use_mixtral_gating=False, moe_use_logits_norm=False, moe_gate_norm_std=1.0) -> Dict[int, List[Tuple[int, float]]]:
    # gates shape [num_tokens, num_experts]
    num_experts = logits.size(1)
    if moe_use_mixtral_gating:
        if moe_use_logits_norm:
            target_std = moe_gate_norm_std
            logits_std = logits.std(dim=1, keepdim=True)
            logits = logits / (logits_std / target_std)
        gates, indices = torch.topk(logits, k=MOE_TOP_K, dim=1)
        gates = F.softmax(gates, dim=1)
    else:
        target_std = moe_gate_norm_std
        if moe_use_logits_norm:
            logits_std = logits.std(dim=1, keepdim=True)
            gates = F.softmax(logits / (logits_std / target_std), dim=1)
        else:
            gates = F.softmax(logits, dim=1)
        # gates shape [num_tokens, MOE_TOP_K]
        # indices shape [num_tokens, MOE_TOP_K]
        gates, indices = torch.topk(gates, k=MOE_TOP_K, dim=1)
        gates = torch.where(indices==(num_experts-1), torch.zeros_like(gates).to(gates.dtype).to(gates.device), gates)
        gates /= torch.sum(gates, dim=1, keepdim=True)

    expert_info = defaultdict(list)
    for expert_id in range(num_experts):
        token_ids, score_ids = torch.nonzero(indices == expert_id, as_tuple=True)
        expert_info[expert_id] = [token_ids, gates[token_ids, score_ids]]

    return expert_info


class Router(Module):
    def __init__(self,
                 model_dim: int,
                 num_experts: int,
                 moe_use_mixtral_gating: bool,
                 moe_2layer_gate: bool,
                 moe_use_logits_norm: bool,
                 moe_gate_norm_std: float,
                 ) -> None:
        super().__init__()

        if moe_2layer_gate:
            self.wg = torch.nn.Sequential(
                torch.nn.Linear(model_dim, num_experts * 8, bias=False).float(),
                torch.nn.Tanh(),
                torch.nn.Linear(num_experts * 8, num_experts, bias=False).float()).float()
        else:
            self.wg = torch.nn.Linear(model_dim, num_experts, bias=False).float()

        self.gate_map = torch.nn.Linear(num_experts, num_experts, bias=False)

        self.gate = gating
        self.moe_use_mixtral_gating = moe_use_mixtral_gating
        self.moe_use_logits_norm = moe_use_logits_norm
        self.moe_gate_norm_std = moe_gate_norm_std

    def forward(self, input: torch.Tensor, gate_residual=None) -> Dict[int, List[Tuple[int, float]]]:
        if isinstance(self.wg, torch.nn.Linear):
            if self.wg.weight.dtype != torch.float32:
                self.wg = self.wg.float()
                setattr(self.wg.weight, 'router', True)
        else:
            if self.wg[0].weight.dtype != torch.float32:
                self.wg = self.wg.float()
                setattr(self.wg[0].weight, "router", True)
                setattr(self.wg[2].weight, "router", True)
        input_fp32 = input.float()
        logits = self.wg(input_fp32)

        if gate_residual is not None:
            gate_residual = self.gate_map(gate_residual.to(self.gate_map.weight.dtype))
            logits += gate_residual

        gate_output = self.gate(logits, self.moe_use_mixtral_gating, self.moe_use_logits_norm, self.moe_gate_norm_std)

        return gate_output, logits


class Experts(torch.nn.Module):
    def __init__(self, expert, num_local_experts=1):
        super(Experts, self).__init__()

        self.experts = torch.nn.ModuleList(
            [copy.deepcopy(expert) for _ in range(num_local_experts - 2 - Constant)] +
            [ConstantExpert(expert) for _ in range(Constant)] +
            [CopyExpert(expert), ZeroExpert(expert)])

    def forward(self, inputs):
        raise NotImplementedError


class MOELayer(Base):
    def __init__(self,
                 gate: Module,
                 experts: Module,
                 ep_size,
                 num_local_experts: int,
                 moe_use_mixtral_gating: bool,
                 moe_feature_no_mul_topk: bool) -> None:
        super().__init__()
        self.gate = gate
        self.experts = experts
        self.ep_size = ep_size
        self.num_local_experts = num_local_experts
        self.moe_use_mixtral_gating = moe_use_mixtral_gating
        self.moe_feature_no_mul_topk = moe_feature_no_mul_topk

    def forward(self, *input: Tensor, gate_residual=None, **kwargs: Any) -> Tensor:
        d_model = input[0].shape[-1]
        reshaped_input = input[0].reshape(-1, d_model)
        output = torch.zeros_like(reshaped_input)
        expert_info, gate_residual = self.gate(reshaped_input, gate_residual)
        if not (self.moe_use_mixtral_gating or self.moe_feature_no_mul_topk):
            reshaped_input *= MOE_TOP_K
        for expert, token_indices_and_gates in expert_info.items():
            indices, gating = token_indices_and_gates
            gating = gating.unsqueeze(-1)
            tokens = reshaped_input.index_select(dim=0, index=indices)
            expert_output = self.experts.experts[expert](tokens)
            expert_output *= gating
            output.index_add_(dim=0, index=indices, source=expert_output)
        output = output.reshape(input[0].shape)

        return output, gate_residual


class MOE(torch.nn.Module):
    def __init__(self,
                 hidden_size,
                 expert,
                 num_experts=1,
                 ep_size=1,
                 moe_use_mixtral_gating=False,
                 moe_2layer_gate=True,
                 moe_use_logits_norm=False,
                 moe_gate_norm_std=1.0,
                 moe_feature_no_mul_topk=False):
        super(MOE, self).__init__()

        self.ep_size = ep_size
        self.num_experts = num_experts
        self.num_local_experts = num_experts // self.ep_size
        self.moe_use_mixtral_gating = moe_use_mixtral_gating
        self.moe_2layer_gate = moe_2layer_gate
        self.moe_use_logits_norm = moe_use_logits_norm
        self.moe_gate_norm_std = moe_gate_norm_std
        self.moe_feature_no_mul_topk = moe_feature_no_mul_topk

        experts = Experts(expert, self.num_local_experts)
        self.moe = MOELayer(Router(hidden_size,
                                   num_experts,
                                   self.moe_use_mixtral_gating,
                                   self.moe_2layer_gate,
                                   self.moe_use_logits_norm,
                                   self.moe_gate_norm_std),
                            experts,
                            self.ep_size,
                            self.num_local_experts,
                            self.moe_use_mixtral_gating,
                            self.moe_feature_no_mul_topk,
                            )

    def forward(self, hidden_states, used_token=None, gate_residual=None):
        output, gate_residual = self.moe(hidden_states, used_token, gate_residual=gate_residual)
        return output, gate_residual