Chat-Error commited on
Commit
fb41b75
·
verified ·
1 Parent(s): b2a36e2

Upload folder using huggingface_hub

Browse files
checkpoint-200/README.md ADDED
@@ -0,0 +1,204 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: Chat-Error/IWasDointCrystalMethOnTheKitchenButThenMomWalkedIn-NeuralHermesStripedCapybara-Mistral-11B-SLERP
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+
201
+
202
+ ### Framework versions
203
+
204
+ - PEFT 0.7.1
checkpoint-200/adapter_config.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "Chat-Error/IWasDointCrystalMethOnTheKitchenButThenMomWalkedIn-NeuralHermesStripedCapybara-Mistral-11B-SLERP",
5
+ "bias": "none",
6
+ "fan_in_fan_out": null,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 64,
13
+ "lora_dropout": 0.05,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 32,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "up_proj",
23
+ "gate_proj",
24
+ "k_proj",
25
+ "q_proj",
26
+ "v_proj",
27
+ "o_proj",
28
+ "down_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM"
31
+ }
checkpoint-200/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9e9ab4db4ee3d4019fcd47e7426d299397efe01adb5b733b01fffc3e6aef61e
3
+ size 335604696
checkpoint-200/optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:46ddddb1d9a5c1dac1b8169cde7b840941755acbdb7428fe7773337e8a22340f
3
+ size 168624724
checkpoint-200/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:184fdf20d8487c36499b7e1e56ff805ab4e9836b0d5fc80eb4cf2a430c4a881e
3
+ size 14244
checkpoint-200/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c357be55ffb15803932fbd4d5ebc414755469ce0d1bc7bb226f43bb6a892762e
3
+ size 1064
checkpoint-200/trainer_state.json ADDED
@@ -0,0 +1,1221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.8938547486033519,
5
+ "eval_steps": 500,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0,
13
+ "learning_rate": 5.000000000000001e-07,
14
+ "loss": 1.5526,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.01,
19
+ "learning_rate": 1.0000000000000002e-06,
20
+ "loss": 1.6607,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.01,
25
+ "learning_rate": 1.5e-06,
26
+ "loss": 1.372,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.02,
31
+ "learning_rate": 2.0000000000000003e-06,
32
+ "loss": 1.4931,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.02,
37
+ "learning_rate": 2.5e-06,
38
+ "loss": 1.5619,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.03,
43
+ "learning_rate": 3e-06,
44
+ "loss": 1.718,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.03,
49
+ "learning_rate": 3.5e-06,
50
+ "loss": 1.4011,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.04,
55
+ "learning_rate": 4.000000000000001e-06,
56
+ "loss": 1.6706,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.04,
61
+ "learning_rate": 4.5e-06,
62
+ "loss": 1.5431,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.04,
67
+ "learning_rate": 5e-06,
68
+ "loss": 1.6866,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.05,
73
+ "learning_rate": 4.999971592166969e-06,
74
+ "loss": 1.3485,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.05,
79
+ "learning_rate": 4.999886369313478e-06,
80
+ "loss": 1.6039,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.06,
85
+ "learning_rate": 4.999744333376324e-06,
86
+ "loss": 1.6092,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.06,
91
+ "learning_rate": 4.999545487583456e-06,
92
+ "loss": 1.4041,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.07,
97
+ "learning_rate": 4.999289836453894e-06,
98
+ "loss": 1.2342,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.07,
103
+ "learning_rate": 4.998977385797635e-06,
104
+ "loss": 1.5679,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.08,
109
+ "learning_rate": 4.998608142715515e-06,
110
+ "loss": 1.5122,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.08,
115
+ "learning_rate": 4.998182115599052e-06,
116
+ "loss": 1.7621,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.08,
121
+ "learning_rate": 4.99769931413025e-06,
122
+ "loss": 1.4677,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.09,
127
+ "learning_rate": 4.997159749281385e-06,
128
+ "loss": 1.4017,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.09,
133
+ "learning_rate": 4.996563433314751e-06,
134
+ "loss": 1.5041,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.1,
139
+ "learning_rate": 4.9959103797823835e-06,
140
+ "loss": 1.7749,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.1,
145
+ "learning_rate": 4.995200603525752e-06,
146
+ "loss": 1.5217,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.11,
151
+ "learning_rate": 4.99443412067542e-06,
152
+ "loss": 1.5351,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.11,
157
+ "learning_rate": 4.993610948650681e-06,
158
+ "loss": 1.6509,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.12,
163
+ "learning_rate": 4.992731106159161e-06,
164
+ "loss": 1.3234,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.12,
169
+ "learning_rate": 4.9917946131963965e-06,
170
+ "loss": 1.5587,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.13,
175
+ "learning_rate": 4.990801491045376e-06,
176
+ "loss": 1.5141,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.13,
181
+ "learning_rate": 4.989751762276056e-06,
182
+ "loss": 1.3626,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.13,
187
+ "learning_rate": 4.988645450744855e-06,
188
+ "loss": 1.413,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.14,
193
+ "learning_rate": 4.987482581594101e-06,
194
+ "loss": 1.5925,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.14,
199
+ "learning_rate": 4.98626318125147e-06,
200
+ "loss": 1.6128,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.15,
205
+ "learning_rate": 4.984987277429377e-06,
206
+ "loss": 1.5369,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.15,
211
+ "learning_rate": 4.983654899124355e-06,
212
+ "loss": 1.4611,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.16,
217
+ "learning_rate": 4.982266076616386e-06,
218
+ "loss": 1.3973,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.16,
223
+ "learning_rate": 4.9808208414682215e-06,
224
+ "loss": 1.6418,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.17,
229
+ "learning_rate": 4.979319226524661e-06,
230
+ "loss": 1.5317,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.17,
235
+ "learning_rate": 4.9777612659118034e-06,
236
+ "loss": 1.3446,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.17,
241
+ "learning_rate": 4.976146995036279e-06,
242
+ "loss": 1.6594,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.18,
247
+ "learning_rate": 4.974476450584438e-06,
248
+ "loss": 1.3303,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.18,
253
+ "learning_rate": 4.972749670521517e-06,
254
+ "loss": 1.391,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.19,
259
+ "learning_rate": 4.970966694090781e-06,
260
+ "loss": 1.5491,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 0.19,
265
+ "learning_rate": 4.969127561812626e-06,
266
+ "loss": 1.7895,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 0.2,
271
+ "learning_rate": 4.967232315483664e-06,
272
+ "loss": 1.3842,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 0.2,
277
+ "learning_rate": 4.965280998175767e-06,
278
+ "loss": 1.3015,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 0.21,
283
+ "learning_rate": 4.963273654235092e-06,
284
+ "loss": 1.5276,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 0.21,
289
+ "learning_rate": 4.961210329281072e-06,
290
+ "loss": 1.3836,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 0.21,
295
+ "learning_rate": 4.959091070205381e-06,
296
+ "loss": 1.3379,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 0.22,
301
+ "learning_rate": 4.9569159251708635e-06,
302
+ "loss": 1.385,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 0.22,
307
+ "learning_rate": 4.954684943610446e-06,
308
+ "loss": 1.4117,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 0.23,
313
+ "learning_rate": 4.95239817622601e-06,
314
+ "loss": 1.5684,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 0.23,
319
+ "learning_rate": 4.95005567498724e-06,
320
+ "loss": 1.4568,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 0.24,
325
+ "learning_rate": 4.947657493130443e-06,
326
+ "loss": 1.4549,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 0.24,
331
+ "learning_rate": 4.945203685157339e-06,
332
+ "loss": 1.4898,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 0.25,
337
+ "learning_rate": 4.942694306833823e-06,
338
+ "loss": 1.3103,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 0.25,
343
+ "learning_rate": 4.940129415188693e-06,
344
+ "loss": 1.5988,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 0.25,
349
+ "learning_rate": 4.937509068512362e-06,
350
+ "loss": 1.607,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 0.26,
355
+ "learning_rate": 4.934833326355525e-06,
356
+ "loss": 1.5436,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 0.26,
361
+ "learning_rate": 4.932102249527812e-06,
362
+ "loss": 1.5437,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 0.27,
367
+ "learning_rate": 4.929315900096403e-06,
368
+ "loss": 1.2806,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 0.27,
373
+ "learning_rate": 4.9264743413846175e-06,
374
+ "loss": 1.7067,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 0.28,
379
+ "learning_rate": 4.923577637970475e-06,
380
+ "loss": 1.4578,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 0.28,
385
+ "learning_rate": 4.920625855685229e-06,
386
+ "loss": 1.4264,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 0.29,
391
+ "learning_rate": 4.917619061611871e-06,
392
+ "loss": 1.376,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 0.29,
397
+ "learning_rate": 4.914557324083604e-06,
398
+ "loss": 1.5883,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 0.29,
403
+ "learning_rate": 4.91144071268229e-06,
404
+ "loss": 1.5123,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 0.3,
409
+ "learning_rate": 4.908269298236871e-06,
410
+ "loss": 1.5713,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 0.3,
415
+ "learning_rate": 4.905043152821757e-06,
416
+ "loss": 1.7112,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 0.31,
421
+ "learning_rate": 4.9017623497551865e-06,
422
+ "loss": 1.4226,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 0.31,
427
+ "learning_rate": 4.898426963597566e-06,
428
+ "loss": 1.5532,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 0.32,
433
+ "learning_rate": 4.895037070149769e-06,
434
+ "loss": 1.3635,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 0.32,
439
+ "learning_rate": 4.8915927464514165e-06,
440
+ "loss": 1.4806,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 0.33,
445
+ "learning_rate": 4.888094070779127e-06,
446
+ "loss": 1.5378,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 0.33,
451
+ "learning_rate": 4.884541122644737e-06,
452
+ "loss": 1.5027,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 0.34,
457
+ "learning_rate": 4.880933982793491e-06,
458
+ "loss": 1.5355,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 0.34,
463
+ "learning_rate": 4.877272733202212e-06,
464
+ "loss": 1.5671,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 0.34,
469
+ "learning_rate": 4.873557457077431e-06,
470
+ "loss": 1.5142,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 0.35,
475
+ "learning_rate": 4.869788238853505e-06,
476
+ "loss": 1.4616,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 0.35,
481
+ "learning_rate": 4.8659651641906925e-06,
482
+ "loss": 1.5574,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 0.36,
487
+ "learning_rate": 4.862088319973205e-06,
488
+ "loss": 1.5764,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 0.36,
493
+ "learning_rate": 4.858157794307237e-06,
494
+ "loss": 1.3982,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 0.37,
499
+ "learning_rate": 4.8541736765189625e-06,
500
+ "loss": 1.2708,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 0.37,
505
+ "learning_rate": 4.850136057152505e-06,
506
+ "loss": 1.4724,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 0.38,
511
+ "learning_rate": 4.8460450279678756e-06,
512
+ "loss": 1.3383,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 0.38,
517
+ "learning_rate": 4.841900681938895e-06,
518
+ "loss": 1.3246,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 0.38,
523
+ "learning_rate": 4.837703113251076e-06,
524
+ "loss": 1.296,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 0.39,
529
+ "learning_rate": 4.83345241729948e-06,
530
+ "loss": 1.3624,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 0.39,
535
+ "learning_rate": 4.8291486906865595e-06,
536
+ "loss": 1.4347,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 0.4,
541
+ "learning_rate": 4.824792031219949e-06,
542
+ "loss": 1.5823,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 0.4,
547
+ "learning_rate": 4.820382537910254e-06,
548
+ "loss": 1.4445,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 0.41,
553
+ "learning_rate": 4.815920310968793e-06,
554
+ "loss": 1.5752,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 0.41,
559
+ "learning_rate": 4.8114054518053265e-06,
560
+ "loss": 1.435,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 0.42,
565
+ "learning_rate": 4.806838063025745e-06,
566
+ "loss": 1.5153,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 0.42,
571
+ "learning_rate": 4.802218248429742e-06,
572
+ "loss": 1.4925,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 0.42,
577
+ "learning_rate": 4.797546113008457e-06,
578
+ "loss": 1.5668,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 0.43,
583
+ "learning_rate": 4.792821762942083e-06,
584
+ "loss": 1.3986,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 0.43,
589
+ "learning_rate": 4.788045305597457e-06,
590
+ "loss": 1.5273,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 0.44,
595
+ "learning_rate": 4.783216849525624e-06,
596
+ "loss": 1.5795,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 0.44,
601
+ "learning_rate": 4.778336504459363e-06,
602
+ "loss": 1.4153,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 0.45,
607
+ "learning_rate": 4.773404381310693e-06,
608
+ "loss": 1.3923,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 0.45,
613
+ "learning_rate": 4.768420592168362e-06,
614
+ "loss": 1.5524,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 0.46,
619
+ "learning_rate": 4.763385250295289e-06,
620
+ "loss": 1.4603,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 0.46,
625
+ "learning_rate": 4.758298470125994e-06,
626
+ "loss": 1.1736,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 0.46,
631
+ "learning_rate": 4.753160367263999e-06,
632
+ "loss": 1.5845,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 0.47,
637
+ "learning_rate": 4.747971058479199e-06,
638
+ "loss": 1.4358,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 0.47,
643
+ "learning_rate": 4.742730661705206e-06,
644
+ "loss": 1.3916,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 0.48,
649
+ "learning_rate": 4.7374392960366765e-06,
650
+ "loss": 1.5518,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 0.48,
655
+ "learning_rate": 4.732097081726594e-06,
656
+ "loss": 1.2674,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 0.49,
661
+ "learning_rate": 4.7267041401835455e-06,
662
+ "loss": 1.6152,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 0.49,
667
+ "learning_rate": 4.721260593968956e-06,
668
+ "loss": 1.3621,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 0.5,
673
+ "learning_rate": 4.715766566794308e-06,
674
+ "loss": 1.349,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 0.5,
679
+ "learning_rate": 4.710222183518327e-06,
680
+ "loss": 1.3356,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 0.51,
685
+ "learning_rate": 4.704627570144144e-06,
686
+ "loss": 1.4364,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 0.51,
691
+ "learning_rate": 4.698982853816434e-06,
692
+ "loss": 1.3736,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 0.51,
697
+ "learning_rate": 4.693288162818522e-06,
698
+ "loss": 1.4143,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 0.52,
703
+ "learning_rate": 4.687543626569476e-06,
704
+ "loss": 1.4389,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 0.52,
709
+ "learning_rate": 4.681749375621154e-06,
710
+ "loss": 1.3867,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 0.53,
715
+ "learning_rate": 4.675905541655249e-06,
716
+ "loss": 1.2436,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 0.53,
721
+ "learning_rate": 4.670012257480287e-06,
722
+ "loss": 1.3963,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 0.54,
727
+ "learning_rate": 4.664069657028617e-06,
728
+ "loss": 1.204,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 0.54,
733
+ "learning_rate": 4.658077875353357e-06,
734
+ "loss": 1.5107,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 0.55,
739
+ "learning_rate": 4.652037048625336e-06,
740
+ "loss": 1.2643,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 0.55,
745
+ "learning_rate": 4.64594731412999e-06,
746
+ "loss": 1.3832,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 0.55,
751
+ "learning_rate": 4.6398088102642485e-06,
752
+ "loss": 1.2725,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 0.56,
757
+ "learning_rate": 4.633621676533385e-06,
758
+ "loss": 1.3698,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 0.56,
763
+ "learning_rate": 4.627386053547851e-06,
764
+ "loss": 1.3291,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 0.57,
769
+ "learning_rate": 4.621102083020074e-06,
770
+ "loss": 1.3378,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 0.57,
775
+ "learning_rate": 4.6147699077612425e-06,
776
+ "loss": 1.5546,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 0.58,
781
+ "learning_rate": 4.60838967167806e-06,
782
+ "loss": 1.2718,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 0.58,
787
+ "learning_rate": 4.60196151976947e-06,
788
+ "loss": 1.3865,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 0.59,
793
+ "learning_rate": 4.595485598123366e-06,
794
+ "loss": 1.4959,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 0.59,
799
+ "learning_rate": 4.588962053913268e-06,
800
+ "loss": 1.3494,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 0.59,
805
+ "learning_rate": 4.582391035394981e-06,
806
+ "loss": 1.4601,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 0.6,
811
+ "learning_rate": 4.5757726919032205e-06,
812
+ "loss": 1.4359,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 0.6,
817
+ "learning_rate": 4.569107173848227e-06,
818
+ "loss": 1.3322,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 0.61,
823
+ "learning_rate": 4.5623946327123375e-06,
824
+ "loss": 1.2575,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 0.61,
829
+ "learning_rate": 4.55563522104655e-06,
830
+ "loss": 1.3388,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 0.62,
835
+ "learning_rate": 4.548829092467058e-06,
836
+ "loss": 1.2733,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 0.62,
841
+ "learning_rate": 4.541976401651749e-06,
842
+ "loss": 1.3894,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 0.63,
847
+ "learning_rate": 4.535077304336701e-06,
848
+ "loss": 1.4156,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 0.63,
853
+ "learning_rate": 4.5281319573126395e-06,
854
+ "loss": 1.3675,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 0.63,
859
+ "learning_rate": 4.5211405184213705e-06,
860
+ "loss": 1.4117,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 0.64,
865
+ "learning_rate": 4.514103146552196e-06,
866
+ "loss": 1.3661,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 0.64,
871
+ "learning_rate": 4.507020001638306e-06,
872
+ "loss": 1.4448,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 0.65,
877
+ "learning_rate": 4.499891244653136e-06,
878
+ "loss": 1.2039,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 0.65,
883
+ "learning_rate": 4.49271703760672e-06,
884
+ "loss": 1.4663,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 0.66,
889
+ "learning_rate": 4.485497543541997e-06,
890
+ "loss": 1.3761,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 0.66,
895
+ "learning_rate": 4.478232926531112e-06,
896
+ "loss": 1.4133,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 0.67,
901
+ "learning_rate": 4.4709233516716865e-06,
902
+ "loss": 1.4241,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 0.67,
907
+ "learning_rate": 4.463568985083068e-06,
908
+ "loss": 1.2586,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 0.67,
913
+ "learning_rate": 4.45616999390255e-06,
914
+ "loss": 1.3779,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 0.68,
919
+ "learning_rate": 4.448726546281577e-06,
920
+ "loss": 1.5175,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 0.68,
925
+ "learning_rate": 4.441238811381923e-06,
926
+ "loss": 1.4529,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 0.69,
931
+ "learning_rate": 4.4337069593718466e-06,
932
+ "loss": 1.3275,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 0.69,
937
+ "learning_rate": 4.426131161422223e-06,
938
+ "loss": 1.385,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 0.7,
943
+ "learning_rate": 4.418511589702655e-06,
944
+ "loss": 1.6058,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 0.7,
949
+ "learning_rate": 4.410848417377559e-06,
950
+ "loss": 1.3474,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 0.71,
955
+ "learning_rate": 4.403141818602231e-06,
956
+ "loss": 1.4563,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 0.71,
961
+ "learning_rate": 4.395391968518888e-06,
962
+ "loss": 1.4148,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 0.72,
967
+ "learning_rate": 4.387599043252688e-06,
968
+ "loss": 1.2975,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 0.72,
973
+ "learning_rate": 4.379763219907728e-06,
974
+ "loss": 1.3575,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 0.72,
979
+ "learning_rate": 4.3718846765630155e-06,
980
+ "loss": 1.1464,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 0.73,
985
+ "learning_rate": 4.363963592268426e-06,
986
+ "loss": 1.291,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 0.73,
991
+ "learning_rate": 4.35600014704063e-06,
992
+ "loss": 1.1857,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 0.74,
997
+ "learning_rate": 4.347994521859008e-06,
998
+ "loss": 1.3634,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 0.74,
1003
+ "learning_rate": 4.33994689866153e-06,
1004
+ "loss": 1.3407,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 0.75,
1009
+ "learning_rate": 4.3318574603406235e-06,
1010
+ "loss": 1.2996,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 0.75,
1015
+ "learning_rate": 4.32372639073902e-06,
1016
+ "loss": 1.2419,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 0.76,
1021
+ "learning_rate": 4.315553874645575e-06,
1022
+ "loss": 1.5337,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 0.76,
1027
+ "learning_rate": 4.307340097791064e-06,
1028
+ "loss": 1.3834,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 0.76,
1033
+ "learning_rate": 4.29908524684397e-06,
1034
+ "loss": 1.3191,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 0.77,
1039
+ "learning_rate": 4.290789509406235e-06,
1040
+ "loss": 1.2044,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 0.77,
1045
+ "learning_rate": 4.282453074008996e-06,
1046
+ "loss": 1.4331,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 0.78,
1051
+ "learning_rate": 4.2740761301083075e-06,
1052
+ "loss": 1.2252,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 0.78,
1057
+ "learning_rate": 4.265658868080826e-06,
1058
+ "loss": 1.3924,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 0.79,
1063
+ "learning_rate": 4.257201479219494e-06,
1064
+ "loss": 1.1913,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 0.79,
1069
+ "learning_rate": 4.2487041557291815e-06,
1070
+ "loss": 1.3467,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 0.8,
1075
+ "learning_rate": 4.240167090722327e-06,
1076
+ "loss": 1.3273,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 0.8,
1081
+ "learning_rate": 4.231590478214543e-06,
1082
+ "loss": 1.6025,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 0.8,
1087
+ "learning_rate": 4.222974513120213e-06,
1088
+ "loss": 1.268,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 0.81,
1093
+ "learning_rate": 4.214319391248053e-06,
1094
+ "loss": 1.2604,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 0.81,
1099
+ "learning_rate": 4.205625309296669e-06,
1100
+ "loss": 1.3002,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 0.82,
1105
+ "learning_rate": 4.196892464850085e-06,
1106
+ "loss": 1.2501,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 0.82,
1111
+ "learning_rate": 4.18812105637325e-06,
1112
+ "loss": 1.3065,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 0.83,
1117
+ "learning_rate": 4.1793112832075285e-06,
1118
+ "loss": 1.3031,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 0.83,
1123
+ "learning_rate": 4.170463345566175e-06,
1124
+ "loss": 1.2509,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 0.84,
1129
+ "learning_rate": 4.161577444529775e-06,
1130
+ "loss": 1.3437,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 0.84,
1135
+ "learning_rate": 4.1526537820416845e-06,
1136
+ "loss": 1.4109,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 0.84,
1141
+ "learning_rate": 4.143692560903435e-06,
1142
+ "loss": 1.352,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 0.85,
1147
+ "learning_rate": 4.134693984770125e-06,
1148
+ "loss": 1.3928,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 0.85,
1153
+ "learning_rate": 4.125658258145793e-06,
1154
+ "loss": 1.1802,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 0.86,
1159
+ "learning_rate": 4.11658558637877e-06,
1160
+ "loss": 1.2749,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 0.86,
1165
+ "learning_rate": 4.107476175657011e-06,
1166
+ "loss": 1.3822,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 0.87,
1171
+ "learning_rate": 4.098330233003413e-06,
1172
+ "loss": 1.6119,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 0.87,
1177
+ "learning_rate": 4.089147966271103e-06,
1178
+ "loss": 1.3138,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 0.88,
1183
+ "learning_rate": 4.079929584138722e-06,
1184
+ "loss": 1.3743,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 0.88,
1189
+ "learning_rate": 4.070675296105679e-06,
1190
+ "loss": 1.3592,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 0.88,
1195
+ "learning_rate": 4.061385312487389e-06,
1196
+ "loss": 1.3331,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 0.89,
1201
+ "learning_rate": 4.052059844410495e-06,
1202
+ "loss": 1.4225,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 0.89,
1207
+ "learning_rate": 4.0426991038080695e-06,
1208
+ "loss": 1.3818,
1209
+ "step": 200
1210
+ }
1211
+ ],
1212
+ "logging_steps": 1,
1213
+ "max_steps": 669,
1214
+ "num_input_tokens_seen": 0,
1215
+ "num_train_epochs": 3,
1216
+ "save_steps": 20,
1217
+ "total_flos": 1.414505334571008e+17,
1218
+ "train_batch_size": 1,
1219
+ "trial_name": null,
1220
+ "trial_params": null
1221
+ }
checkpoint-200/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f2af49b3634a6dfe256c70aa8c069a00e66e7454ba8f9b6cb6293e06315e0ced
3
+ size 5240