from flask import Flask, request, jsonify, render_template from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline # Load the fine-tuned model model_path = "./gpt2_finetuned" tokenizer = AutoTokenizer.from_pretrained(model_path) model = AutoModelForCausalLM.from_pretrained(model_path) # Create a Flask app app = Flask(__name__) # Define a route for the chat API @app.route("/chat", methods=["POST"]) def chat(): data = request.json user_input = data.get("message", "") if not user_input: return jsonify({"error": "No input provided"}), 400 # Generate a response generator = pipeline("text-generation", model=model, tokenizer=tokenizer) response = generator(user_input, max_length=100, num_return_sequences=1, temperature=0.7) bot_reply = response[0]["generated_text"] return jsonify({"reply": bot_reply}) # Serve the chat interface @app.route("/") def index(): return render_template("index.html") if __name__ == "__main__": app.run(debug=True)