Weiguang Han
commited on
Commit
·
09b4141
1
Parent(s):
2862848
update tokenizer
Browse files- README.md +5 -0
- global_step3639/zero_pp_rank_0_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_1_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_1_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_2_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_2_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_3_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_3_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_4_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_4_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_5_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_5_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_6_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_6_mp_rank_00_optim_states.pt +0 -3
- global_step3639/zero_pp_rank_7_mp_rank_00_model_states.pt +0 -3
- global_step3639/zero_pp_rank_7_mp_rank_00_optim_states.pt +0 -3
- latest +0 -1
- rng_state_0.pth +0 -3
- rng_state_1.pth +0 -3
- rng_state_2.pth +0 -3
- rng_state_3.pth +0 -3
- rng_state_4.pth +0 -3
- rng_state_5.pth +0 -3
- rng_state_6.pth +0 -3
- rng_state_7.pth +0 -3
- special_tokens_map.json +23 -0
- global_step3639/zero_pp_rank_0_mp_rank_00_model_states.pt → tokenizer.model +2 -2
- tokenizer_config.json +34 -0
- trainer_state.json +0 -2218
- training_args.bin +0 -3
- zero_to_fp32.py +0 -578
README.md
CHANGED
|
@@ -1,3 +1,8 @@
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: mit
|
| 3 |
---
|
| 4 |
+
```Python
|
| 5 |
+
from transformers import LlamaTokenizer, LlamaForCausalLM
|
| 6 |
+
LlamaTokenizer.from_pretrained('ChanceFocus/finma-7b-nlp')
|
| 7 |
+
LlamaForCausalLM.from_pretrained('ChanceFocus/finma-7b-nlp', device_map='auto')
|
| 8 |
+
```
|
global_step3639/zero_pp_rank_0_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:03df8e22a4c413dc584f686b04542fe2a60f136c24ed945e29d79d3017704504
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_1_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:9d94cf7316f596e4de4c49cf79a5ac7642c5b220d7664f54ad0beace3fe97fc8
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_1_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fcc119a3938eb92d256d95c08d408c8e8556fcf10a8f771aa567ac42b56c4a9a
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_2_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fbfc3a858a6c1d6da9c68767928220efa9f7806cf357eb56d277a55650d179ba
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_2_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b010db939a59b1eb80d553539d581589c9dd3066b1799410f75774bb877751a1
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_3_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:e7144ab90a39d68984bd0afc781c1aed3971815f744acf46bb76e23ca1c8e6e0
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_3_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0e3826a7991563a7a3fd5406075a47695c48840c3119ad95ea2a4d1b43b9dd0f
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_4_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b483ace6acbaf9afae274369ea879ebbff802b037ca6f91fffaed30900b0960b
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_4_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c73df25ad3243114efaee856ac7334a6bf66413c6da50141d4f7dc15d5ad148b
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_5_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b8d548c30c216cd78db737ba16d8df715a43bae2477163f11007a184fdf9d0eb
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_5_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:bce9cdebe47cd06b7065fd17c8b8ba6b79cefffc41471d94a3e11c2f125441d4
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_6_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:724292452affe5ff8d98db96ebb9f356bd72324f32e2c281e23b608ddc3f245f
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_6_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:0ed58c2e3cf103ce762ac8dba241d0946025d71b96874710e43af964df801f7a
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_7_mp_rank_00_model_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:dd7630f212570e2624b64ae629c046edc7747508e61846faff7da6c3c22dd3ce
|
| 3 |
-
size 168022
|
|
|
|
|
|
|
|
|
|
|
|
global_step3639/zero_pp_rank_7_mp_rank_00_optim_states.pt
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:ead37ef4a3a2c87d53960d04995431d06eae49d3fa01838b42dd2954f5217320
|
| 3 |
-
size 10107627001
|
|
|
|
|
|
|
|
|
|
|
|
latest
DELETED
|
@@ -1 +0,0 @@
|
|
| 1 |
-
global_step3639
|
|
|
|
|
|
rng_state_0.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5539dd7b259c1dd70b24a442cd0db654de172851dc9ad592c00bd0873776a675
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_1.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:ae401ae645379434caffc0185c738039f26685db09ba0aba7a187a8ff97810a9
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_2.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c89a43885840bc17c1afdbf25def2d1f36021795ec85893c0d9b1fe1c5b8540d
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_3.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:47edb967b5d8d4551ccb3bda2bf617d308d0981d37333b4a8839054f68577695
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_4.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:fef2af776d8df77a340254ef61a2b8d0fcf40ee1ddfaeca625988e0165237db3
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_5.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b1d3372a72c3e55207954229dad35b30e29127caffc546802c219fbbecc37247
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_6.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:5903aacbc3201df025352bcb75c398360d0239d5813369122cc0785e94aa68dc
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
rng_state_7.pth
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:b0102f09cbe2f6f8f4be258e9801fe1495308691ad96ede2d8c503f2d48b5d4e
|
| 3 |
-
size 21687
|
|
|
|
|
|
|
|
|
|
|
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": true,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"eos_token": {
|
| 10 |
+
"content": "",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"unk_token": {
|
| 17 |
+
"content": "",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": true,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
}
|
| 23 |
+
}
|
global_step3639/zero_pp_rank_0_mp_rank_00_model_states.pt → tokenizer.model
RENAMED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
-
size
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
|
| 3 |
+
size 499723
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": true,
|
| 3 |
+
"add_eos_token": false,
|
| 4 |
+
"bos_token": {
|
| 5 |
+
"__type": "AddedToken",
|
| 6 |
+
"content": "",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": true,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"clean_up_tokenization_spaces": false,
|
| 13 |
+
"eos_token": {
|
| 14 |
+
"__type": "AddedToken",
|
| 15 |
+
"content": "",
|
| 16 |
+
"lstrip": false,
|
| 17 |
+
"normalized": true,
|
| 18 |
+
"rstrip": false,
|
| 19 |
+
"single_word": false
|
| 20 |
+
},
|
| 21 |
+
"model_max_length": 1000000000000000019884624838656,
|
| 22 |
+
"pad_token": null,
|
| 23 |
+
"sp_model_kwargs": {},
|
| 24 |
+
"tokenizer_class": "LlamaTokenizer",
|
| 25 |
+
"unk_token": {
|
| 26 |
+
"__type": "AddedToken",
|
| 27 |
+
"content": "",
|
| 28 |
+
"lstrip": false,
|
| 29 |
+
"normalized": true,
|
| 30 |
+
"rstrip": false,
|
| 31 |
+
"single_word": false
|
| 32 |
+
},
|
| 33 |
+
"use_fast": false
|
| 34 |
+
}
|
trainer_state.json
DELETED
|
@@ -1,2218 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"best_metric": null,
|
| 3 |
-
"best_model_checkpoint": null,
|
| 4 |
-
"epoch": 1.8001484046500122,
|
| 5 |
-
"global_step": 3639,
|
| 6 |
-
"is_hyper_param_search": false,
|
| 7 |
-
"is_local_process_zero": true,
|
| 8 |
-
"is_world_process_zero": true,
|
| 9 |
-
"log_history": [
|
| 10 |
-
{
|
| 11 |
-
"epoch": 0.0,
|
| 12 |
-
"learning_rate": 2.253431117230021e-06,
|
| 13 |
-
"loss": 3.9812,
|
| 14 |
-
"step": 10
|
| 15 |
-
},
|
| 16 |
-
{
|
| 17 |
-
"epoch": 0.01,
|
| 18 |
-
"learning_rate": 3.7916371566987085e-06,
|
| 19 |
-
"loss": 0.5473,
|
| 20 |
-
"step": 20
|
| 21 |
-
},
|
| 22 |
-
{
|
| 23 |
-
"epoch": 0.01,
|
| 24 |
-
"learning_rate": 4.506862234460042e-06,
|
| 25 |
-
"loss": 0.3243,
|
| 26 |
-
"step": 30
|
| 27 |
-
},
|
| 28 |
-
{
|
| 29 |
-
"epoch": 0.02,
|
| 30 |
-
"learning_rate": 4.977968949561282e-06,
|
| 31 |
-
"loss": 0.3058,
|
| 32 |
-
"step": 40
|
| 33 |
-
},
|
| 34 |
-
{
|
| 35 |
-
"epoch": 0.02,
|
| 36 |
-
"learning_rate": 5.3298431961673955e-06,
|
| 37 |
-
"loss": 0.2495,
|
| 38 |
-
"step": 50
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"epoch": 0.03,
|
| 42 |
-
"learning_rate": 5.610809355829126e-06,
|
| 43 |
-
"loss": 0.3345,
|
| 44 |
-
"step": 60
|
| 45 |
-
},
|
| 46 |
-
{
|
| 47 |
-
"epoch": 0.03,
|
| 48 |
-
"learning_rate": 5.844707706136422e-06,
|
| 49 |
-
"loss": 0.2784,
|
| 50 |
-
"step": 70
|
| 51 |
-
},
|
| 52 |
-
{
|
| 53 |
-
"epoch": 0.04,
|
| 54 |
-
"learning_rate": 6.04506827392873e-06,
|
| 55 |
-
"loss": 0.2421,
|
| 56 |
-
"step": 80
|
| 57 |
-
},
|
| 58 |
-
{
|
| 59 |
-
"epoch": 0.04,
|
| 60 |
-
"learning_rate": 6.220313630636092e-06,
|
| 61 |
-
"loss": 0.2661,
|
| 62 |
-
"step": 90
|
| 63 |
-
},
|
| 64 |
-
{
|
| 65 |
-
"epoch": 0.05,
|
| 66 |
-
"learning_rate": 6.376044588167711e-06,
|
| 67 |
-
"loss": 0.2831,
|
| 68 |
-
"step": 100
|
| 69 |
-
},
|
| 70 |
-
{
|
| 71 |
-
"epoch": 0.05,
|
| 72 |
-
"learning_rate": 6.516174989029968e-06,
|
| 73 |
-
"loss": 0.2793,
|
| 74 |
-
"step": 110
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"epoch": 0.06,
|
| 78 |
-
"learning_rate": 6.643547802988659e-06,
|
| 79 |
-
"loss": 0.2488,
|
| 80 |
-
"step": 120
|
| 81 |
-
},
|
| 82 |
-
{
|
| 83 |
-
"epoch": 0.06,
|
| 84 |
-
"learning_rate": 6.7602933516900655e-06,
|
| 85 |
-
"loss": 0.2379,
|
| 86 |
-
"step": 130
|
| 87 |
-
},
|
| 88 |
-
{
|
| 89 |
-
"epoch": 0.07,
|
| 90 |
-
"learning_rate": 6.868049235636083e-06,
|
| 91 |
-
"loss": 0.2388,
|
| 92 |
-
"step": 140
|
| 93 |
-
},
|
| 94 |
-
{
|
| 95 |
-
"epoch": 0.07,
|
| 96 |
-
"learning_rate": 6.968101466168447e-06,
|
| 97 |
-
"loss": 0.2273,
|
| 98 |
-
"step": 150
|
| 99 |
-
},
|
| 100 |
-
{
|
| 101 |
-
"epoch": 0.08,
|
| 102 |
-
"learning_rate": 7.061478425531149e-06,
|
| 103 |
-
"loss": 0.2571,
|
| 104 |
-
"step": 160
|
| 105 |
-
},
|
| 106 |
-
{
|
| 107 |
-
"epoch": 0.08,
|
| 108 |
-
"learning_rate": 7.149015395297812e-06,
|
| 109 |
-
"loss": 0.2466,
|
| 110 |
-
"step": 170
|
| 111 |
-
},
|
| 112 |
-
{
|
| 113 |
-
"epoch": 0.09,
|
| 114 |
-
"learning_rate": 7.231400066791303e-06,
|
| 115 |
-
"loss": 0.2315,
|
| 116 |
-
"step": 180
|
| 117 |
-
},
|
| 118 |
-
{
|
| 119 |
-
"epoch": 0.09,
|
| 120 |
-
"learning_rate": 7.309205386775784e-06,
|
| 121 |
-
"loss": 0.2101,
|
| 122 |
-
"step": 190
|
| 123 |
-
},
|
| 124 |
-
{
|
| 125 |
-
"epoch": 0.1,
|
| 126 |
-
"learning_rate": 7.375715089769526e-06,
|
| 127 |
-
"loss": 0.2425,
|
| 128 |
-
"step": 200
|
| 129 |
-
},
|
| 130 |
-
{
|
| 131 |
-
"epoch": 0.1,
|
| 132 |
-
"learning_rate": 7.44608846772297e-06,
|
| 133 |
-
"loss": 0.243,
|
| 134 |
-
"step": 210
|
| 135 |
-
},
|
| 136 |
-
{
|
| 137 |
-
"epoch": 0.11,
|
| 138 |
-
"learning_rate": 7.513093380702437e-06,
|
| 139 |
-
"loss": 0.2521,
|
| 140 |
-
"step": 220
|
| 141 |
-
},
|
| 142 |
-
{
|
| 143 |
-
"epoch": 0.11,
|
| 144 |
-
"learning_rate": 7.57703761945179e-06,
|
| 145 |
-
"loss": 0.2401,
|
| 146 |
-
"step": 230
|
| 147 |
-
},
|
| 148 |
-
{
|
| 149 |
-
"epoch": 0.12,
|
| 150 |
-
"learning_rate": 7.638188625267883e-06,
|
| 151 |
-
"loss": 0.2342,
|
| 152 |
-
"step": 240
|
| 153 |
-
},
|
| 154 |
-
{
|
| 155 |
-
"epoch": 0.12,
|
| 156 |
-
"learning_rate": 7.696780248446552e-06,
|
| 157 |
-
"loss": 0.2439,
|
| 158 |
-
"step": 250
|
| 159 |
-
},
|
| 160 |
-
{
|
| 161 |
-
"epoch": 0.13,
|
| 162 |
-
"learning_rate": 7.753018148386997e-06,
|
| 163 |
-
"loss": 0.2553,
|
| 164 |
-
"step": 260
|
| 165 |
-
},
|
| 166 |
-
{
|
| 167 |
-
"epoch": 0.13,
|
| 168 |
-
"learning_rate": 7.80708415034011e-06,
|
| 169 |
-
"loss": 0.2547,
|
| 170 |
-
"step": 270
|
| 171 |
-
},
|
| 172 |
-
{
|
| 173 |
-
"epoch": 0.14,
|
| 174 |
-
"learning_rate": 7.859139791732239e-06,
|
| 175 |
-
"loss": 0.2316,
|
| 176 |
-
"step": 280
|
| 177 |
-
},
|
| 178 |
-
{
|
| 179 |
-
"epoch": 0.14,
|
| 180 |
-
"learning_rate": 7.909329232496527e-06,
|
| 181 |
-
"loss": 0.2227,
|
| 182 |
-
"step": 290
|
| 183 |
-
},
|
| 184 |
-
{
|
| 185 |
-
"epoch": 0.15,
|
| 186 |
-
"learning_rate": 7.957781661555314e-06,
|
| 187 |
-
"loss": 0.21,
|
| 188 |
-
"step": 300
|
| 189 |
-
},
|
| 190 |
-
{
|
| 191 |
-
"epoch": 0.15,
|
| 192 |
-
"learning_rate": 8e-06,
|
| 193 |
-
"loss": 0.2145,
|
| 194 |
-
"step": 310
|
| 195 |
-
},
|
| 196 |
-
{
|
| 197 |
-
"epoch": 0.16,
|
| 198 |
-
"learning_rate": 7.98611111111111e-06,
|
| 199 |
-
"loss": 0.2101,
|
| 200 |
-
"step": 320
|
| 201 |
-
},
|
| 202 |
-
{
|
| 203 |
-
"epoch": 0.16,
|
| 204 |
-
"learning_rate": 7.972222222222223e-06,
|
| 205 |
-
"loss": 0.1999,
|
| 206 |
-
"step": 330
|
| 207 |
-
},
|
| 208 |
-
{
|
| 209 |
-
"epoch": 0.17,
|
| 210 |
-
"learning_rate": 7.958333333333333e-06,
|
| 211 |
-
"loss": 0.2254,
|
| 212 |
-
"step": 340
|
| 213 |
-
},
|
| 214 |
-
{
|
| 215 |
-
"epoch": 0.17,
|
| 216 |
-
"learning_rate": 7.944444444444444e-06,
|
| 217 |
-
"loss": 0.2597,
|
| 218 |
-
"step": 350
|
| 219 |
-
},
|
| 220 |
-
{
|
| 221 |
-
"epoch": 0.18,
|
| 222 |
-
"learning_rate": 7.930555555555554e-06,
|
| 223 |
-
"loss": 0.1814,
|
| 224 |
-
"step": 360
|
| 225 |
-
},
|
| 226 |
-
{
|
| 227 |
-
"epoch": 0.18,
|
| 228 |
-
"learning_rate": 7.916666666666667e-06,
|
| 229 |
-
"loss": 0.2173,
|
| 230 |
-
"step": 370
|
| 231 |
-
},
|
| 232 |
-
{
|
| 233 |
-
"epoch": 0.19,
|
| 234 |
-
"learning_rate": 7.902777777777777e-06,
|
| 235 |
-
"loss": 0.2136,
|
| 236 |
-
"step": 380
|
| 237 |
-
},
|
| 238 |
-
{
|
| 239 |
-
"epoch": 0.19,
|
| 240 |
-
"learning_rate": 7.88888888888889e-06,
|
| 241 |
-
"loss": 0.2015,
|
| 242 |
-
"step": 390
|
| 243 |
-
},
|
| 244 |
-
{
|
| 245 |
-
"epoch": 0.2,
|
| 246 |
-
"learning_rate": 7.875e-06,
|
| 247 |
-
"loss": 0.2059,
|
| 248 |
-
"step": 400
|
| 249 |
-
},
|
| 250 |
-
{
|
| 251 |
-
"epoch": 0.2,
|
| 252 |
-
"learning_rate": 7.86111111111111e-06,
|
| 253 |
-
"loss": 0.23,
|
| 254 |
-
"step": 410
|
| 255 |
-
},
|
| 256 |
-
{
|
| 257 |
-
"epoch": 0.21,
|
| 258 |
-
"learning_rate": 7.847222222222221e-06,
|
| 259 |
-
"loss": 0.166,
|
| 260 |
-
"step": 420
|
| 261 |
-
},
|
| 262 |
-
{
|
| 263 |
-
"epoch": 0.21,
|
| 264 |
-
"learning_rate": 7.833333333333333e-06,
|
| 265 |
-
"loss": 0.2403,
|
| 266 |
-
"step": 430
|
| 267 |
-
},
|
| 268 |
-
{
|
| 269 |
-
"epoch": 0.22,
|
| 270 |
-
"learning_rate": 7.819444444444444e-06,
|
| 271 |
-
"loss": 0.2111,
|
| 272 |
-
"step": 440
|
| 273 |
-
},
|
| 274 |
-
{
|
| 275 |
-
"epoch": 0.22,
|
| 276 |
-
"learning_rate": 7.805555555555555e-06,
|
| 277 |
-
"loss": 0.2309,
|
| 278 |
-
"step": 450
|
| 279 |
-
},
|
| 280 |
-
{
|
| 281 |
-
"epoch": 0.23,
|
| 282 |
-
"learning_rate": 7.791666666666667e-06,
|
| 283 |
-
"loss": 0.2117,
|
| 284 |
-
"step": 460
|
| 285 |
-
},
|
| 286 |
-
{
|
| 287 |
-
"epoch": 0.23,
|
| 288 |
-
"learning_rate": 7.777777777777777e-06,
|
| 289 |
-
"loss": 0.2085,
|
| 290 |
-
"step": 470
|
| 291 |
-
},
|
| 292 |
-
{
|
| 293 |
-
"epoch": 0.24,
|
| 294 |
-
"learning_rate": 7.76388888888889e-06,
|
| 295 |
-
"loss": 0.1904,
|
| 296 |
-
"step": 480
|
| 297 |
-
},
|
| 298 |
-
{
|
| 299 |
-
"epoch": 0.24,
|
| 300 |
-
"learning_rate": 7.75e-06,
|
| 301 |
-
"loss": 0.1954,
|
| 302 |
-
"step": 490
|
| 303 |
-
},
|
| 304 |
-
{
|
| 305 |
-
"epoch": 0.25,
|
| 306 |
-
"learning_rate": 7.736111111111111e-06,
|
| 307 |
-
"loss": 0.2056,
|
| 308 |
-
"step": 500
|
| 309 |
-
},
|
| 310 |
-
{
|
| 311 |
-
"epoch": 0.25,
|
| 312 |
-
"learning_rate": 7.722222222222222e-06,
|
| 313 |
-
"loss": 0.169,
|
| 314 |
-
"step": 510
|
| 315 |
-
},
|
| 316 |
-
{
|
| 317 |
-
"epoch": 0.26,
|
| 318 |
-
"learning_rate": 7.708333333333332e-06,
|
| 319 |
-
"loss": 0.1814,
|
| 320 |
-
"step": 520
|
| 321 |
-
},
|
| 322 |
-
{
|
| 323 |
-
"epoch": 0.26,
|
| 324 |
-
"learning_rate": 7.694444444444444e-06,
|
| 325 |
-
"loss": 0.21,
|
| 326 |
-
"step": 530
|
| 327 |
-
},
|
| 328 |
-
{
|
| 329 |
-
"epoch": 0.27,
|
| 330 |
-
"learning_rate": 7.680555555555555e-06,
|
| 331 |
-
"loss": 0.2285,
|
| 332 |
-
"step": 540
|
| 333 |
-
},
|
| 334 |
-
{
|
| 335 |
-
"epoch": 0.27,
|
| 336 |
-
"learning_rate": 7.666666666666667e-06,
|
| 337 |
-
"loss": 0.2074,
|
| 338 |
-
"step": 550
|
| 339 |
-
},
|
| 340 |
-
{
|
| 341 |
-
"epoch": 0.28,
|
| 342 |
-
"learning_rate": 7.652777777777778e-06,
|
| 343 |
-
"loss": 0.173,
|
| 344 |
-
"step": 560
|
| 345 |
-
},
|
| 346 |
-
{
|
| 347 |
-
"epoch": 0.28,
|
| 348 |
-
"learning_rate": 7.638888888888888e-06,
|
| 349 |
-
"loss": 0.187,
|
| 350 |
-
"step": 570
|
| 351 |
-
},
|
| 352 |
-
{
|
| 353 |
-
"epoch": 0.29,
|
| 354 |
-
"learning_rate": 7.625e-06,
|
| 355 |
-
"loss": 0.2002,
|
| 356 |
-
"step": 580
|
| 357 |
-
},
|
| 358 |
-
{
|
| 359 |
-
"epoch": 0.29,
|
| 360 |
-
"learning_rate": 7.6111111111111104e-06,
|
| 361 |
-
"loss": 0.2257,
|
| 362 |
-
"step": 590
|
| 363 |
-
},
|
| 364 |
-
{
|
| 365 |
-
"epoch": 0.3,
|
| 366 |
-
"learning_rate": 7.597222222222222e-06,
|
| 367 |
-
"loss": 0.2068,
|
| 368 |
-
"step": 600
|
| 369 |
-
},
|
| 370 |
-
{
|
| 371 |
-
"epoch": 0.3,
|
| 372 |
-
"learning_rate": 7.5833333333333324e-06,
|
| 373 |
-
"loss": 0.1968,
|
| 374 |
-
"step": 610
|
| 375 |
-
},
|
| 376 |
-
{
|
| 377 |
-
"epoch": 0.31,
|
| 378 |
-
"learning_rate": 7.569444444444445e-06,
|
| 379 |
-
"loss": 0.2122,
|
| 380 |
-
"step": 620
|
| 381 |
-
},
|
| 382 |
-
{
|
| 383 |
-
"epoch": 0.31,
|
| 384 |
-
"learning_rate": 7.555555555555555e-06,
|
| 385 |
-
"loss": 0.2306,
|
| 386 |
-
"step": 630
|
| 387 |
-
},
|
| 388 |
-
{
|
| 389 |
-
"epoch": 0.32,
|
| 390 |
-
"learning_rate": 7.541666666666667e-06,
|
| 391 |
-
"loss": 0.2108,
|
| 392 |
-
"step": 640
|
| 393 |
-
},
|
| 394 |
-
{
|
| 395 |
-
"epoch": 0.32,
|
| 396 |
-
"learning_rate": 7.527777777777777e-06,
|
| 397 |
-
"loss": 0.1923,
|
| 398 |
-
"step": 650
|
| 399 |
-
},
|
| 400 |
-
{
|
| 401 |
-
"epoch": 0.33,
|
| 402 |
-
"learning_rate": 7.513888888888889e-06,
|
| 403 |
-
"loss": 0.1989,
|
| 404 |
-
"step": 660
|
| 405 |
-
},
|
| 406 |
-
{
|
| 407 |
-
"epoch": 0.33,
|
| 408 |
-
"learning_rate": 7.499999999999999e-06,
|
| 409 |
-
"loss": 0.2179,
|
| 410 |
-
"step": 670
|
| 411 |
-
},
|
| 412 |
-
{
|
| 413 |
-
"epoch": 0.34,
|
| 414 |
-
"learning_rate": 7.486111111111111e-06,
|
| 415 |
-
"loss": 0.1915,
|
| 416 |
-
"step": 680
|
| 417 |
-
},
|
| 418 |
-
{
|
| 419 |
-
"epoch": 0.34,
|
| 420 |
-
"learning_rate": 7.472222222222222e-06,
|
| 421 |
-
"loss": 0.1965,
|
| 422 |
-
"step": 690
|
| 423 |
-
},
|
| 424 |
-
{
|
| 425 |
-
"epoch": 0.35,
|
| 426 |
-
"learning_rate": 7.458333333333333e-06,
|
| 427 |
-
"loss": 0.2425,
|
| 428 |
-
"step": 700
|
| 429 |
-
},
|
| 430 |
-
{
|
| 431 |
-
"epoch": 0.35,
|
| 432 |
-
"learning_rate": 7.444444444444444e-06,
|
| 433 |
-
"loss": 0.1933,
|
| 434 |
-
"step": 710
|
| 435 |
-
},
|
| 436 |
-
{
|
| 437 |
-
"epoch": 0.36,
|
| 438 |
-
"learning_rate": 7.430555555555555e-06,
|
| 439 |
-
"loss": 0.2314,
|
| 440 |
-
"step": 720
|
| 441 |
-
},
|
| 442 |
-
{
|
| 443 |
-
"epoch": 0.36,
|
| 444 |
-
"learning_rate": 7.416666666666666e-06,
|
| 445 |
-
"loss": 0.1901,
|
| 446 |
-
"step": 730
|
| 447 |
-
},
|
| 448 |
-
{
|
| 449 |
-
"epoch": 0.37,
|
| 450 |
-
"learning_rate": 7.402777777777778e-06,
|
| 451 |
-
"loss": 0.1852,
|
| 452 |
-
"step": 740
|
| 453 |
-
},
|
| 454 |
-
{
|
| 455 |
-
"epoch": 0.37,
|
| 456 |
-
"learning_rate": 7.388888888888889e-06,
|
| 457 |
-
"loss": 0.201,
|
| 458 |
-
"step": 750
|
| 459 |
-
},
|
| 460 |
-
{
|
| 461 |
-
"epoch": 0.38,
|
| 462 |
-
"learning_rate": 7.375e-06,
|
| 463 |
-
"loss": 0.1636,
|
| 464 |
-
"step": 760
|
| 465 |
-
},
|
| 466 |
-
{
|
| 467 |
-
"epoch": 0.38,
|
| 468 |
-
"learning_rate": 7.36111111111111e-06,
|
| 469 |
-
"loss": 0.184,
|
| 470 |
-
"step": 770
|
| 471 |
-
},
|
| 472 |
-
{
|
| 473 |
-
"epoch": 0.39,
|
| 474 |
-
"learning_rate": 7.347222222222222e-06,
|
| 475 |
-
"loss": 0.1618,
|
| 476 |
-
"step": 780
|
| 477 |
-
},
|
| 478 |
-
{
|
| 479 |
-
"epoch": 0.39,
|
| 480 |
-
"learning_rate": 7.333333333333332e-06,
|
| 481 |
-
"loss": 0.1867,
|
| 482 |
-
"step": 790
|
| 483 |
-
},
|
| 484 |
-
{
|
| 485 |
-
"epoch": 0.4,
|
| 486 |
-
"learning_rate": 7.3194444444444446e-06,
|
| 487 |
-
"loss": 0.1877,
|
| 488 |
-
"step": 800
|
| 489 |
-
},
|
| 490 |
-
{
|
| 491 |
-
"epoch": 0.4,
|
| 492 |
-
"learning_rate": 7.305555555555555e-06,
|
| 493 |
-
"loss": 0.1569,
|
| 494 |
-
"step": 810
|
| 495 |
-
},
|
| 496 |
-
{
|
| 497 |
-
"epoch": 0.41,
|
| 498 |
-
"learning_rate": 7.291666666666667e-06,
|
| 499 |
-
"loss": 0.1651,
|
| 500 |
-
"step": 820
|
| 501 |
-
},
|
| 502 |
-
{
|
| 503 |
-
"epoch": 0.41,
|
| 504 |
-
"learning_rate": 7.277777777777777e-06,
|
| 505 |
-
"loss": 0.215,
|
| 506 |
-
"step": 830
|
| 507 |
-
},
|
| 508 |
-
{
|
| 509 |
-
"epoch": 0.42,
|
| 510 |
-
"learning_rate": 7.263888888888889e-06,
|
| 511 |
-
"loss": 0.1609,
|
| 512 |
-
"step": 840
|
| 513 |
-
},
|
| 514 |
-
{
|
| 515 |
-
"epoch": 0.42,
|
| 516 |
-
"learning_rate": 7.25e-06,
|
| 517 |
-
"loss": 0.1935,
|
| 518 |
-
"step": 850
|
| 519 |
-
},
|
| 520 |
-
{
|
| 521 |
-
"epoch": 0.43,
|
| 522 |
-
"learning_rate": 7.236111111111111e-06,
|
| 523 |
-
"loss": 0.1688,
|
| 524 |
-
"step": 860
|
| 525 |
-
},
|
| 526 |
-
{
|
| 527 |
-
"epoch": 0.43,
|
| 528 |
-
"learning_rate": 7.222222222222222e-06,
|
| 529 |
-
"loss": 0.1645,
|
| 530 |
-
"step": 870
|
| 531 |
-
},
|
| 532 |
-
{
|
| 533 |
-
"epoch": 0.44,
|
| 534 |
-
"learning_rate": 7.208333333333333e-06,
|
| 535 |
-
"loss": 0.162,
|
| 536 |
-
"step": 880
|
| 537 |
-
},
|
| 538 |
-
{
|
| 539 |
-
"epoch": 0.44,
|
| 540 |
-
"learning_rate": 7.194444444444444e-06,
|
| 541 |
-
"loss": 0.1467,
|
| 542 |
-
"step": 890
|
| 543 |
-
},
|
| 544 |
-
{
|
| 545 |
-
"epoch": 0.45,
|
| 546 |
-
"learning_rate": 7.180555555555555e-06,
|
| 547 |
-
"loss": 0.1579,
|
| 548 |
-
"step": 900
|
| 549 |
-
},
|
| 550 |
-
{
|
| 551 |
-
"epoch": 0.45,
|
| 552 |
-
"learning_rate": 7.166666666666667e-06,
|
| 553 |
-
"loss": 0.1774,
|
| 554 |
-
"step": 910
|
| 555 |
-
},
|
| 556 |
-
{
|
| 557 |
-
"epoch": 0.46,
|
| 558 |
-
"learning_rate": 7.1527777777777775e-06,
|
| 559 |
-
"loss": 0.1931,
|
| 560 |
-
"step": 920
|
| 561 |
-
},
|
| 562 |
-
{
|
| 563 |
-
"epoch": 0.46,
|
| 564 |
-
"learning_rate": 7.138888888888889e-06,
|
| 565 |
-
"loss": 0.1505,
|
| 566 |
-
"step": 930
|
| 567 |
-
},
|
| 568 |
-
{
|
| 569 |
-
"epoch": 0.47,
|
| 570 |
-
"learning_rate": 7.1249999999999995e-06,
|
| 571 |
-
"loss": 0.1632,
|
| 572 |
-
"step": 940
|
| 573 |
-
},
|
| 574 |
-
{
|
| 575 |
-
"epoch": 0.47,
|
| 576 |
-
"learning_rate": 7.11111111111111e-06,
|
| 577 |
-
"loss": 0.169,
|
| 578 |
-
"step": 950
|
| 579 |
-
},
|
| 580 |
-
{
|
| 581 |
-
"epoch": 0.47,
|
| 582 |
-
"learning_rate": 7.097222222222222e-06,
|
| 583 |
-
"loss": 0.1762,
|
| 584 |
-
"step": 960
|
| 585 |
-
},
|
| 586 |
-
{
|
| 587 |
-
"epoch": 0.48,
|
| 588 |
-
"learning_rate": 7.083333333333333e-06,
|
| 589 |
-
"loss": 0.1838,
|
| 590 |
-
"step": 970
|
| 591 |
-
},
|
| 592 |
-
{
|
| 593 |
-
"epoch": 0.48,
|
| 594 |
-
"learning_rate": 7.0694444444444444e-06,
|
| 595 |
-
"loss": 0.1622,
|
| 596 |
-
"step": 980
|
| 597 |
-
},
|
| 598 |
-
{
|
| 599 |
-
"epoch": 0.49,
|
| 600 |
-
"learning_rate": 7.055555555555555e-06,
|
| 601 |
-
"loss": 0.1562,
|
| 602 |
-
"step": 990
|
| 603 |
-
},
|
| 604 |
-
{
|
| 605 |
-
"epoch": 0.49,
|
| 606 |
-
"learning_rate": 7.0416666666666664e-06,
|
| 607 |
-
"loss": 0.1475,
|
| 608 |
-
"step": 1000
|
| 609 |
-
},
|
| 610 |
-
{
|
| 611 |
-
"epoch": 0.5,
|
| 612 |
-
"learning_rate": 7.027777777777777e-06,
|
| 613 |
-
"loss": 0.1557,
|
| 614 |
-
"step": 1010
|
| 615 |
-
},
|
| 616 |
-
{
|
| 617 |
-
"epoch": 0.5,
|
| 618 |
-
"learning_rate": 7.013888888888889e-06,
|
| 619 |
-
"loss": 0.1851,
|
| 620 |
-
"step": 1020
|
| 621 |
-
},
|
| 622 |
-
{
|
| 623 |
-
"epoch": 0.51,
|
| 624 |
-
"learning_rate": 7e-06,
|
| 625 |
-
"loss": 0.1607,
|
| 626 |
-
"step": 1030
|
| 627 |
-
},
|
| 628 |
-
{
|
| 629 |
-
"epoch": 0.51,
|
| 630 |
-
"learning_rate": 6.9861111111111105e-06,
|
| 631 |
-
"loss": 0.1541,
|
| 632 |
-
"step": 1040
|
| 633 |
-
},
|
| 634 |
-
{
|
| 635 |
-
"epoch": 0.52,
|
| 636 |
-
"learning_rate": 6.972222222222222e-06,
|
| 637 |
-
"loss": 0.1509,
|
| 638 |
-
"step": 1050
|
| 639 |
-
},
|
| 640 |
-
{
|
| 641 |
-
"epoch": 0.52,
|
| 642 |
-
"learning_rate": 6.9583333333333325e-06,
|
| 643 |
-
"loss": 0.1754,
|
| 644 |
-
"step": 1060
|
| 645 |
-
},
|
| 646 |
-
{
|
| 647 |
-
"epoch": 0.53,
|
| 648 |
-
"learning_rate": 6.944444444444444e-06,
|
| 649 |
-
"loss": 0.205,
|
| 650 |
-
"step": 1070
|
| 651 |
-
},
|
| 652 |
-
{
|
| 653 |
-
"epoch": 0.53,
|
| 654 |
-
"learning_rate": 6.930555555555555e-06,
|
| 655 |
-
"loss": 0.2037,
|
| 656 |
-
"step": 1080
|
| 657 |
-
},
|
| 658 |
-
{
|
| 659 |
-
"epoch": 0.54,
|
| 660 |
-
"learning_rate": 6.916666666666667e-06,
|
| 661 |
-
"loss": 0.1424,
|
| 662 |
-
"step": 1090
|
| 663 |
-
},
|
| 664 |
-
{
|
| 665 |
-
"epoch": 0.54,
|
| 666 |
-
"learning_rate": 6.902777777777777e-06,
|
| 667 |
-
"loss": 0.1594,
|
| 668 |
-
"step": 1100
|
| 669 |
-
},
|
| 670 |
-
{
|
| 671 |
-
"epoch": 0.55,
|
| 672 |
-
"learning_rate": 6.888888888888889e-06,
|
| 673 |
-
"loss": 0.1838,
|
| 674 |
-
"step": 1110
|
| 675 |
-
},
|
| 676 |
-
{
|
| 677 |
-
"epoch": 0.55,
|
| 678 |
-
"learning_rate": 6.874999999999999e-06,
|
| 679 |
-
"loss": 0.1626,
|
| 680 |
-
"step": 1120
|
| 681 |
-
},
|
| 682 |
-
{
|
| 683 |
-
"epoch": 0.56,
|
| 684 |
-
"learning_rate": 6.86111111111111e-06,
|
| 685 |
-
"loss": 0.1689,
|
| 686 |
-
"step": 1130
|
| 687 |
-
},
|
| 688 |
-
{
|
| 689 |
-
"epoch": 0.56,
|
| 690 |
-
"learning_rate": 6.847222222222222e-06,
|
| 691 |
-
"loss": 0.1548,
|
| 692 |
-
"step": 1140
|
| 693 |
-
},
|
| 694 |
-
{
|
| 695 |
-
"epoch": 0.57,
|
| 696 |
-
"learning_rate": 6.833333333333333e-06,
|
| 697 |
-
"loss": 0.1435,
|
| 698 |
-
"step": 1150
|
| 699 |
-
},
|
| 700 |
-
{
|
| 701 |
-
"epoch": 0.57,
|
| 702 |
-
"learning_rate": 6.819444444444444e-06,
|
| 703 |
-
"loss": 0.1939,
|
| 704 |
-
"step": 1160
|
| 705 |
-
},
|
| 706 |
-
{
|
| 707 |
-
"epoch": 0.58,
|
| 708 |
-
"learning_rate": 6.805555555555555e-06,
|
| 709 |
-
"loss": 0.1802,
|
| 710 |
-
"step": 1170
|
| 711 |
-
},
|
| 712 |
-
{
|
| 713 |
-
"epoch": 0.58,
|
| 714 |
-
"learning_rate": 6.791666666666666e-06,
|
| 715 |
-
"loss": 0.1865,
|
| 716 |
-
"step": 1180
|
| 717 |
-
},
|
| 718 |
-
{
|
| 719 |
-
"epoch": 0.59,
|
| 720 |
-
"learning_rate": 6.777777777777778e-06,
|
| 721 |
-
"loss": 0.18,
|
| 722 |
-
"step": 1190
|
| 723 |
-
},
|
| 724 |
-
{
|
| 725 |
-
"epoch": 0.59,
|
| 726 |
-
"learning_rate": 6.763888888888889e-06,
|
| 727 |
-
"loss": 0.1862,
|
| 728 |
-
"step": 1200
|
| 729 |
-
},
|
| 730 |
-
{
|
| 731 |
-
"epoch": 0.6,
|
| 732 |
-
"learning_rate": 6.75e-06,
|
| 733 |
-
"loss": 0.183,
|
| 734 |
-
"step": 1210
|
| 735 |
-
},
|
| 736 |
-
{
|
| 737 |
-
"epoch": 0.6,
|
| 738 |
-
"eval_loss": 0.234619140625,
|
| 739 |
-
"eval_runtime": 601.4014,
|
| 740 |
-
"eval_samples_per_second": 39.832,
|
| 741 |
-
"eval_steps_per_second": 4.98,
|
| 742 |
-
"step": 1213
|
| 743 |
-
},
|
| 744 |
-
{
|
| 745 |
-
"epoch": 0.6,
|
| 746 |
-
"learning_rate": 6.73611111111111e-06,
|
| 747 |
-
"loss": 0.1954,
|
| 748 |
-
"step": 1220
|
| 749 |
-
},
|
| 750 |
-
{
|
| 751 |
-
"epoch": 0.61,
|
| 752 |
-
"learning_rate": 6.722222222222222e-06,
|
| 753 |
-
"loss": 0.1433,
|
| 754 |
-
"step": 1230
|
| 755 |
-
},
|
| 756 |
-
{
|
| 757 |
-
"epoch": 0.61,
|
| 758 |
-
"learning_rate": 6.708333333333332e-06,
|
| 759 |
-
"loss": 0.1732,
|
| 760 |
-
"step": 1240
|
| 761 |
-
},
|
| 762 |
-
{
|
| 763 |
-
"epoch": 0.62,
|
| 764 |
-
"learning_rate": 6.694444444444445e-06,
|
| 765 |
-
"loss": 0.1985,
|
| 766 |
-
"step": 1250
|
| 767 |
-
},
|
| 768 |
-
{
|
| 769 |
-
"epoch": 0.62,
|
| 770 |
-
"learning_rate": 6.680555555555555e-06,
|
| 771 |
-
"loss": 0.1786,
|
| 772 |
-
"step": 1260
|
| 773 |
-
},
|
| 774 |
-
{
|
| 775 |
-
"epoch": 0.63,
|
| 776 |
-
"learning_rate": 6.666666666666667e-06,
|
| 777 |
-
"loss": 0.167,
|
| 778 |
-
"step": 1270
|
| 779 |
-
},
|
| 780 |
-
{
|
| 781 |
-
"epoch": 0.63,
|
| 782 |
-
"learning_rate": 6.652777777777777e-06,
|
| 783 |
-
"loss": 0.1548,
|
| 784 |
-
"step": 1280
|
| 785 |
-
},
|
| 786 |
-
{
|
| 787 |
-
"epoch": 0.64,
|
| 788 |
-
"learning_rate": 6.638888888888889e-06,
|
| 789 |
-
"loss": 0.1559,
|
| 790 |
-
"step": 1290
|
| 791 |
-
},
|
| 792 |
-
{
|
| 793 |
-
"epoch": 0.64,
|
| 794 |
-
"learning_rate": 6.625e-06,
|
| 795 |
-
"loss": 0.176,
|
| 796 |
-
"step": 1300
|
| 797 |
-
},
|
| 798 |
-
{
|
| 799 |
-
"epoch": 0.65,
|
| 800 |
-
"learning_rate": 6.611111111111111e-06,
|
| 801 |
-
"loss": 0.1687,
|
| 802 |
-
"step": 1310
|
| 803 |
-
},
|
| 804 |
-
{
|
| 805 |
-
"epoch": 0.65,
|
| 806 |
-
"learning_rate": 6.597222222222222e-06,
|
| 807 |
-
"loss": 0.1497,
|
| 808 |
-
"step": 1320
|
| 809 |
-
},
|
| 810 |
-
{
|
| 811 |
-
"epoch": 0.66,
|
| 812 |
-
"learning_rate": 6.583333333333333e-06,
|
| 813 |
-
"loss": 0.1891,
|
| 814 |
-
"step": 1330
|
| 815 |
-
},
|
| 816 |
-
{
|
| 817 |
-
"epoch": 0.66,
|
| 818 |
-
"learning_rate": 6.569444444444444e-06,
|
| 819 |
-
"loss": 0.1783,
|
| 820 |
-
"step": 1340
|
| 821 |
-
},
|
| 822 |
-
{
|
| 823 |
-
"epoch": 0.67,
|
| 824 |
-
"learning_rate": 6.555555555555555e-06,
|
| 825 |
-
"loss": 0.168,
|
| 826 |
-
"step": 1350
|
| 827 |
-
},
|
| 828 |
-
{
|
| 829 |
-
"epoch": 0.67,
|
| 830 |
-
"learning_rate": 6.541666666666667e-06,
|
| 831 |
-
"loss": 0.1871,
|
| 832 |
-
"step": 1360
|
| 833 |
-
},
|
| 834 |
-
{
|
| 835 |
-
"epoch": 0.68,
|
| 836 |
-
"learning_rate": 6.527777777777778e-06,
|
| 837 |
-
"loss": 0.1601,
|
| 838 |
-
"step": 1370
|
| 839 |
-
},
|
| 840 |
-
{
|
| 841 |
-
"epoch": 0.68,
|
| 842 |
-
"learning_rate": 6.513888888888889e-06,
|
| 843 |
-
"loss": 0.1466,
|
| 844 |
-
"step": 1380
|
| 845 |
-
},
|
| 846 |
-
{
|
| 847 |
-
"epoch": 0.69,
|
| 848 |
-
"learning_rate": 6.5e-06,
|
| 849 |
-
"loss": 0.1799,
|
| 850 |
-
"step": 1390
|
| 851 |
-
},
|
| 852 |
-
{
|
| 853 |
-
"epoch": 0.69,
|
| 854 |
-
"learning_rate": 6.48611111111111e-06,
|
| 855 |
-
"loss": 0.1448,
|
| 856 |
-
"step": 1400
|
| 857 |
-
},
|
| 858 |
-
{
|
| 859 |
-
"epoch": 0.7,
|
| 860 |
-
"learning_rate": 6.472222222222222e-06,
|
| 861 |
-
"loss": 0.1459,
|
| 862 |
-
"step": 1410
|
| 863 |
-
},
|
| 864 |
-
{
|
| 865 |
-
"epoch": 0.7,
|
| 866 |
-
"learning_rate": 6.458333333333333e-06,
|
| 867 |
-
"loss": 0.1677,
|
| 868 |
-
"step": 1420
|
| 869 |
-
},
|
| 870 |
-
{
|
| 871 |
-
"epoch": 0.71,
|
| 872 |
-
"learning_rate": 6.4444444444444445e-06,
|
| 873 |
-
"loss": 0.1878,
|
| 874 |
-
"step": 1430
|
| 875 |
-
},
|
| 876 |
-
{
|
| 877 |
-
"epoch": 0.71,
|
| 878 |
-
"learning_rate": 6.430555555555555e-06,
|
| 879 |
-
"loss": 0.1494,
|
| 880 |
-
"step": 1440
|
| 881 |
-
},
|
| 882 |
-
{
|
| 883 |
-
"epoch": 0.72,
|
| 884 |
-
"learning_rate": 6.4166666666666665e-06,
|
| 885 |
-
"loss": 0.1406,
|
| 886 |
-
"step": 1450
|
| 887 |
-
},
|
| 888 |
-
{
|
| 889 |
-
"epoch": 0.72,
|
| 890 |
-
"learning_rate": 6.402777777777777e-06,
|
| 891 |
-
"loss": 0.1538,
|
| 892 |
-
"step": 1460
|
| 893 |
-
},
|
| 894 |
-
{
|
| 895 |
-
"epoch": 0.73,
|
| 896 |
-
"learning_rate": 6.390277777777778e-06,
|
| 897 |
-
"loss": 0.169,
|
| 898 |
-
"step": 1470
|
| 899 |
-
},
|
| 900 |
-
{
|
| 901 |
-
"epoch": 0.73,
|
| 902 |
-
"learning_rate": 6.376388888888889e-06,
|
| 903 |
-
"loss": 0.1444,
|
| 904 |
-
"step": 1480
|
| 905 |
-
},
|
| 906 |
-
{
|
| 907 |
-
"epoch": 0.74,
|
| 908 |
-
"learning_rate": 6.3625e-06,
|
| 909 |
-
"loss": 0.1561,
|
| 910 |
-
"step": 1490
|
| 911 |
-
},
|
| 912 |
-
{
|
| 913 |
-
"epoch": 0.74,
|
| 914 |
-
"learning_rate": 6.348611111111111e-06,
|
| 915 |
-
"loss": 0.1493,
|
| 916 |
-
"step": 1500
|
| 917 |
-
},
|
| 918 |
-
{
|
| 919 |
-
"epoch": 0.75,
|
| 920 |
-
"learning_rate": 6.334722222222222e-06,
|
| 921 |
-
"loss": 0.1547,
|
| 922 |
-
"step": 1510
|
| 923 |
-
},
|
| 924 |
-
{
|
| 925 |
-
"epoch": 0.75,
|
| 926 |
-
"learning_rate": 6.320833333333333e-06,
|
| 927 |
-
"loss": 0.1749,
|
| 928 |
-
"step": 1520
|
| 929 |
-
},
|
| 930 |
-
{
|
| 931 |
-
"epoch": 0.76,
|
| 932 |
-
"learning_rate": 6.3069444444444445e-06,
|
| 933 |
-
"loss": 0.1903,
|
| 934 |
-
"step": 1530
|
| 935 |
-
},
|
| 936 |
-
{
|
| 937 |
-
"epoch": 0.76,
|
| 938 |
-
"learning_rate": 6.293055555555555e-06,
|
| 939 |
-
"loss": 0.18,
|
| 940 |
-
"step": 1540
|
| 941 |
-
},
|
| 942 |
-
{
|
| 943 |
-
"epoch": 0.77,
|
| 944 |
-
"learning_rate": 6.2791666666666665e-06,
|
| 945 |
-
"loss": 0.1491,
|
| 946 |
-
"step": 1550
|
| 947 |
-
},
|
| 948 |
-
{
|
| 949 |
-
"epoch": 0.77,
|
| 950 |
-
"learning_rate": 6.265277777777777e-06,
|
| 951 |
-
"loss": 0.1777,
|
| 952 |
-
"step": 1560
|
| 953 |
-
},
|
| 954 |
-
{
|
| 955 |
-
"epoch": 0.78,
|
| 956 |
-
"learning_rate": 6.2513888888888886e-06,
|
| 957 |
-
"loss": 0.1226,
|
| 958 |
-
"step": 1570
|
| 959 |
-
},
|
| 960 |
-
{
|
| 961 |
-
"epoch": 0.78,
|
| 962 |
-
"learning_rate": 6.237499999999999e-06,
|
| 963 |
-
"loss": 0.1822,
|
| 964 |
-
"step": 1580
|
| 965 |
-
},
|
| 966 |
-
{
|
| 967 |
-
"epoch": 0.79,
|
| 968 |
-
"learning_rate": 6.2236111111111114e-06,
|
| 969 |
-
"loss": 0.143,
|
| 970 |
-
"step": 1590
|
| 971 |
-
},
|
| 972 |
-
{
|
| 973 |
-
"epoch": 0.79,
|
| 974 |
-
"learning_rate": 6.209722222222222e-06,
|
| 975 |
-
"loss": 0.1411,
|
| 976 |
-
"step": 1600
|
| 977 |
-
},
|
| 978 |
-
{
|
| 979 |
-
"epoch": 0.8,
|
| 980 |
-
"learning_rate": 6.1958333333333334e-06,
|
| 981 |
-
"loss": 0.1452,
|
| 982 |
-
"step": 1610
|
| 983 |
-
},
|
| 984 |
-
{
|
| 985 |
-
"epoch": 0.8,
|
| 986 |
-
"learning_rate": 6.181944444444444e-06,
|
| 987 |
-
"loss": 0.1673,
|
| 988 |
-
"step": 1620
|
| 989 |
-
},
|
| 990 |
-
{
|
| 991 |
-
"epoch": 0.81,
|
| 992 |
-
"learning_rate": 6.169444444444444e-06,
|
| 993 |
-
"loss": 0.1706,
|
| 994 |
-
"step": 1630
|
| 995 |
-
},
|
| 996 |
-
{
|
| 997 |
-
"epoch": 0.81,
|
| 998 |
-
"learning_rate": 6.155555555555556e-06,
|
| 999 |
-
"loss": 0.1755,
|
| 1000 |
-
"step": 1640
|
| 1001 |
-
},
|
| 1002 |
-
{
|
| 1003 |
-
"epoch": 0.82,
|
| 1004 |
-
"learning_rate": 6.141666666666667e-06,
|
| 1005 |
-
"loss": 0.1831,
|
| 1006 |
-
"step": 1650
|
| 1007 |
-
},
|
| 1008 |
-
{
|
| 1009 |
-
"epoch": 0.82,
|
| 1010 |
-
"learning_rate": 6.127777777777778e-06,
|
| 1011 |
-
"loss": 0.1402,
|
| 1012 |
-
"step": 1660
|
| 1013 |
-
},
|
| 1014 |
-
{
|
| 1015 |
-
"epoch": 0.83,
|
| 1016 |
-
"learning_rate": 6.113888888888889e-06,
|
| 1017 |
-
"loss": 0.1434,
|
| 1018 |
-
"step": 1670
|
| 1019 |
-
},
|
| 1020 |
-
{
|
| 1021 |
-
"epoch": 0.83,
|
| 1022 |
-
"learning_rate": 6.099999999999999e-06,
|
| 1023 |
-
"loss": 0.1347,
|
| 1024 |
-
"step": 1680
|
| 1025 |
-
},
|
| 1026 |
-
{
|
| 1027 |
-
"epoch": 0.84,
|
| 1028 |
-
"learning_rate": 6.086111111111111e-06,
|
| 1029 |
-
"loss": 0.1614,
|
| 1030 |
-
"step": 1690
|
| 1031 |
-
},
|
| 1032 |
-
{
|
| 1033 |
-
"epoch": 0.84,
|
| 1034 |
-
"learning_rate": 6.072222222222222e-06,
|
| 1035 |
-
"loss": 0.1533,
|
| 1036 |
-
"step": 1700
|
| 1037 |
-
},
|
| 1038 |
-
{
|
| 1039 |
-
"epoch": 0.85,
|
| 1040 |
-
"learning_rate": 6.0583333333333335e-06,
|
| 1041 |
-
"loss": 0.1666,
|
| 1042 |
-
"step": 1710
|
| 1043 |
-
},
|
| 1044 |
-
{
|
| 1045 |
-
"epoch": 0.85,
|
| 1046 |
-
"learning_rate": 6.044444444444444e-06,
|
| 1047 |
-
"loss": 0.1725,
|
| 1048 |
-
"step": 1720
|
| 1049 |
-
},
|
| 1050 |
-
{
|
| 1051 |
-
"epoch": 0.86,
|
| 1052 |
-
"learning_rate": 6.0305555555555555e-06,
|
| 1053 |
-
"loss": 0.1819,
|
| 1054 |
-
"step": 1730
|
| 1055 |
-
},
|
| 1056 |
-
{
|
| 1057 |
-
"epoch": 0.86,
|
| 1058 |
-
"learning_rate": 6.016666666666666e-06,
|
| 1059 |
-
"loss": 0.1739,
|
| 1060 |
-
"step": 1740
|
| 1061 |
-
},
|
| 1062 |
-
{
|
| 1063 |
-
"epoch": 0.87,
|
| 1064 |
-
"learning_rate": 6.0027777777777775e-06,
|
| 1065 |
-
"loss": 0.1573,
|
| 1066 |
-
"step": 1750
|
| 1067 |
-
},
|
| 1068 |
-
{
|
| 1069 |
-
"epoch": 0.87,
|
| 1070 |
-
"learning_rate": 5.988888888888889e-06,
|
| 1071 |
-
"loss": 0.1458,
|
| 1072 |
-
"step": 1760
|
| 1073 |
-
},
|
| 1074 |
-
{
|
| 1075 |
-
"epoch": 0.88,
|
| 1076 |
-
"learning_rate": 5.9749999999999995e-06,
|
| 1077 |
-
"loss": 0.1243,
|
| 1078 |
-
"step": 1770
|
| 1079 |
-
},
|
| 1080 |
-
{
|
| 1081 |
-
"epoch": 0.88,
|
| 1082 |
-
"learning_rate": 5.961111111111111e-06,
|
| 1083 |
-
"loss": 0.1657,
|
| 1084 |
-
"step": 1780
|
| 1085 |
-
},
|
| 1086 |
-
{
|
| 1087 |
-
"epoch": 0.89,
|
| 1088 |
-
"learning_rate": 5.9472222222222216e-06,
|
| 1089 |
-
"loss": 0.1871,
|
| 1090 |
-
"step": 1790
|
| 1091 |
-
},
|
| 1092 |
-
{
|
| 1093 |
-
"epoch": 0.89,
|
| 1094 |
-
"learning_rate": 5.933333333333333e-06,
|
| 1095 |
-
"loss": 0.1365,
|
| 1096 |
-
"step": 1800
|
| 1097 |
-
},
|
| 1098 |
-
{
|
| 1099 |
-
"epoch": 0.9,
|
| 1100 |
-
"learning_rate": 5.9194444444444444e-06,
|
| 1101 |
-
"loss": 0.0987,
|
| 1102 |
-
"step": 1810
|
| 1103 |
-
},
|
| 1104 |
-
{
|
| 1105 |
-
"epoch": 0.9,
|
| 1106 |
-
"learning_rate": 5.905555555555556e-06,
|
| 1107 |
-
"loss": 0.1396,
|
| 1108 |
-
"step": 1820
|
| 1109 |
-
},
|
| 1110 |
-
{
|
| 1111 |
-
"epoch": 0.91,
|
| 1112 |
-
"learning_rate": 5.8916666666666664e-06,
|
| 1113 |
-
"loss": 0.1693,
|
| 1114 |
-
"step": 1830
|
| 1115 |
-
},
|
| 1116 |
-
{
|
| 1117 |
-
"epoch": 0.91,
|
| 1118 |
-
"learning_rate": 5.877777777777778e-06,
|
| 1119 |
-
"loss": 0.1391,
|
| 1120 |
-
"step": 1840
|
| 1121 |
-
},
|
| 1122 |
-
{
|
| 1123 |
-
"epoch": 0.92,
|
| 1124 |
-
"learning_rate": 5.8638888888888885e-06,
|
| 1125 |
-
"loss": 0.1439,
|
| 1126 |
-
"step": 1850
|
| 1127 |
-
},
|
| 1128 |
-
{
|
| 1129 |
-
"epoch": 0.92,
|
| 1130 |
-
"learning_rate": 5.849999999999999e-06,
|
| 1131 |
-
"loss": 0.1503,
|
| 1132 |
-
"step": 1860
|
| 1133 |
-
},
|
| 1134 |
-
{
|
| 1135 |
-
"epoch": 0.93,
|
| 1136 |
-
"learning_rate": 5.836111111111111e-06,
|
| 1137 |
-
"loss": 0.1359,
|
| 1138 |
-
"step": 1870
|
| 1139 |
-
},
|
| 1140 |
-
{
|
| 1141 |
-
"epoch": 0.93,
|
| 1142 |
-
"learning_rate": 5.822222222222222e-06,
|
| 1143 |
-
"loss": 0.1423,
|
| 1144 |
-
"step": 1880
|
| 1145 |
-
},
|
| 1146 |
-
{
|
| 1147 |
-
"epoch": 0.93,
|
| 1148 |
-
"learning_rate": 5.808333333333333e-06,
|
| 1149 |
-
"loss": 0.1317,
|
| 1150 |
-
"step": 1890
|
| 1151 |
-
},
|
| 1152 |
-
{
|
| 1153 |
-
"epoch": 0.94,
|
| 1154 |
-
"learning_rate": 5.794444444444444e-06,
|
| 1155 |
-
"loss": 0.1431,
|
| 1156 |
-
"step": 1900
|
| 1157 |
-
},
|
| 1158 |
-
{
|
| 1159 |
-
"epoch": 0.94,
|
| 1160 |
-
"learning_rate": 5.780555555555555e-06,
|
| 1161 |
-
"loss": 0.1235,
|
| 1162 |
-
"step": 1910
|
| 1163 |
-
},
|
| 1164 |
-
{
|
| 1165 |
-
"epoch": 0.95,
|
| 1166 |
-
"learning_rate": 5.766666666666666e-06,
|
| 1167 |
-
"loss": 0.1397,
|
| 1168 |
-
"step": 1920
|
| 1169 |
-
},
|
| 1170 |
-
{
|
| 1171 |
-
"epoch": 0.95,
|
| 1172 |
-
"learning_rate": 5.752777777777778e-06,
|
| 1173 |
-
"loss": 0.1375,
|
| 1174 |
-
"step": 1930
|
| 1175 |
-
},
|
| 1176 |
-
{
|
| 1177 |
-
"epoch": 0.96,
|
| 1178 |
-
"learning_rate": 5.738888888888889e-06,
|
| 1179 |
-
"loss": 0.1341,
|
| 1180 |
-
"step": 1940
|
| 1181 |
-
},
|
| 1182 |
-
{
|
| 1183 |
-
"epoch": 0.96,
|
| 1184 |
-
"learning_rate": 5.724999999999999e-06,
|
| 1185 |
-
"loss": 0.1408,
|
| 1186 |
-
"step": 1950
|
| 1187 |
-
},
|
| 1188 |
-
{
|
| 1189 |
-
"epoch": 0.97,
|
| 1190 |
-
"learning_rate": 5.711111111111111e-06,
|
| 1191 |
-
"loss": 0.1766,
|
| 1192 |
-
"step": 1960
|
| 1193 |
-
},
|
| 1194 |
-
{
|
| 1195 |
-
"epoch": 0.97,
|
| 1196 |
-
"learning_rate": 5.697222222222221e-06,
|
| 1197 |
-
"loss": 0.177,
|
| 1198 |
-
"step": 1970
|
| 1199 |
-
},
|
| 1200 |
-
{
|
| 1201 |
-
"epoch": 0.98,
|
| 1202 |
-
"learning_rate": 5.683333333333334e-06,
|
| 1203 |
-
"loss": 0.1586,
|
| 1204 |
-
"step": 1980
|
| 1205 |
-
},
|
| 1206 |
-
{
|
| 1207 |
-
"epoch": 0.98,
|
| 1208 |
-
"learning_rate": 5.669444444444444e-06,
|
| 1209 |
-
"loss": 0.1447,
|
| 1210 |
-
"step": 1990
|
| 1211 |
-
},
|
| 1212 |
-
{
|
| 1213 |
-
"epoch": 0.99,
|
| 1214 |
-
"learning_rate": 5.655555555555556e-06,
|
| 1215 |
-
"loss": 0.1452,
|
| 1216 |
-
"step": 2000
|
| 1217 |
-
},
|
| 1218 |
-
{
|
| 1219 |
-
"epoch": 0.99,
|
| 1220 |
-
"learning_rate": 5.641666666666666e-06,
|
| 1221 |
-
"loss": 0.1078,
|
| 1222 |
-
"step": 2010
|
| 1223 |
-
},
|
| 1224 |
-
{
|
| 1225 |
-
"epoch": 1.0,
|
| 1226 |
-
"learning_rate": 5.627777777777778e-06,
|
| 1227 |
-
"loss": 0.1133,
|
| 1228 |
-
"step": 2020
|
| 1229 |
-
},
|
| 1230 |
-
{
|
| 1231 |
-
"epoch": 1.0,
|
| 1232 |
-
"learning_rate": 5.613888888888888e-06,
|
| 1233 |
-
"loss": 0.1288,
|
| 1234 |
-
"step": 2030
|
| 1235 |
-
},
|
| 1236 |
-
{
|
| 1237 |
-
"epoch": 1.01,
|
| 1238 |
-
"learning_rate": 5.6e-06,
|
| 1239 |
-
"loss": 0.1128,
|
| 1240 |
-
"step": 2040
|
| 1241 |
-
},
|
| 1242 |
-
{
|
| 1243 |
-
"epoch": 1.01,
|
| 1244 |
-
"learning_rate": 5.586111111111111e-06,
|
| 1245 |
-
"loss": 0.1298,
|
| 1246 |
-
"step": 2050
|
| 1247 |
-
},
|
| 1248 |
-
{
|
| 1249 |
-
"epoch": 1.02,
|
| 1250 |
-
"learning_rate": 5.572222222222222e-06,
|
| 1251 |
-
"loss": 0.1189,
|
| 1252 |
-
"step": 2060
|
| 1253 |
-
},
|
| 1254 |
-
{
|
| 1255 |
-
"epoch": 1.02,
|
| 1256 |
-
"learning_rate": 5.558333333333333e-06,
|
| 1257 |
-
"loss": 0.1478,
|
| 1258 |
-
"step": 2070
|
| 1259 |
-
},
|
| 1260 |
-
{
|
| 1261 |
-
"epoch": 1.03,
|
| 1262 |
-
"learning_rate": 5.544444444444444e-06,
|
| 1263 |
-
"loss": 0.1179,
|
| 1264 |
-
"step": 2080
|
| 1265 |
-
},
|
| 1266 |
-
{
|
| 1267 |
-
"epoch": 1.03,
|
| 1268 |
-
"learning_rate": 5.530555555555556e-06,
|
| 1269 |
-
"loss": 0.1119,
|
| 1270 |
-
"step": 2090
|
| 1271 |
-
},
|
| 1272 |
-
{
|
| 1273 |
-
"epoch": 1.04,
|
| 1274 |
-
"learning_rate": 5.516666666666667e-06,
|
| 1275 |
-
"loss": 0.1355,
|
| 1276 |
-
"step": 2100
|
| 1277 |
-
},
|
| 1278 |
-
{
|
| 1279 |
-
"epoch": 1.04,
|
| 1280 |
-
"learning_rate": 5.502777777777778e-06,
|
| 1281 |
-
"loss": 0.1105,
|
| 1282 |
-
"step": 2110
|
| 1283 |
-
},
|
| 1284 |
-
{
|
| 1285 |
-
"epoch": 1.05,
|
| 1286 |
-
"learning_rate": 5.488888888888889e-06,
|
| 1287 |
-
"loss": 0.1289,
|
| 1288 |
-
"step": 2120
|
| 1289 |
-
},
|
| 1290 |
-
{
|
| 1291 |
-
"epoch": 1.05,
|
| 1292 |
-
"learning_rate": 5.474999999999999e-06,
|
| 1293 |
-
"loss": 0.1127,
|
| 1294 |
-
"step": 2130
|
| 1295 |
-
},
|
| 1296 |
-
{
|
| 1297 |
-
"epoch": 1.06,
|
| 1298 |
-
"learning_rate": 5.461111111111111e-06,
|
| 1299 |
-
"loss": 0.1814,
|
| 1300 |
-
"step": 2140
|
| 1301 |
-
},
|
| 1302 |
-
{
|
| 1303 |
-
"epoch": 1.06,
|
| 1304 |
-
"learning_rate": 5.447222222222222e-06,
|
| 1305 |
-
"loss": 0.1554,
|
| 1306 |
-
"step": 2150
|
| 1307 |
-
},
|
| 1308 |
-
{
|
| 1309 |
-
"epoch": 1.07,
|
| 1310 |
-
"learning_rate": 5.4333333333333335e-06,
|
| 1311 |
-
"loss": 0.1038,
|
| 1312 |
-
"step": 2160
|
| 1313 |
-
},
|
| 1314 |
-
{
|
| 1315 |
-
"epoch": 1.07,
|
| 1316 |
-
"learning_rate": 5.419444444444444e-06,
|
| 1317 |
-
"loss": 0.1085,
|
| 1318 |
-
"step": 2170
|
| 1319 |
-
},
|
| 1320 |
-
{
|
| 1321 |
-
"epoch": 1.08,
|
| 1322 |
-
"learning_rate": 5.4055555555555556e-06,
|
| 1323 |
-
"loss": 0.1364,
|
| 1324 |
-
"step": 2180
|
| 1325 |
-
},
|
| 1326 |
-
{
|
| 1327 |
-
"epoch": 1.08,
|
| 1328 |
-
"learning_rate": 5.391666666666666e-06,
|
| 1329 |
-
"loss": 0.1089,
|
| 1330 |
-
"step": 2190
|
| 1331 |
-
},
|
| 1332 |
-
{
|
| 1333 |
-
"epoch": 1.09,
|
| 1334 |
-
"learning_rate": 5.377777777777778e-06,
|
| 1335 |
-
"loss": 0.1484,
|
| 1336 |
-
"step": 2200
|
| 1337 |
-
},
|
| 1338 |
-
{
|
| 1339 |
-
"epoch": 1.09,
|
| 1340 |
-
"learning_rate": 5.363888888888889e-06,
|
| 1341 |
-
"loss": 0.1254,
|
| 1342 |
-
"step": 2210
|
| 1343 |
-
},
|
| 1344 |
-
{
|
| 1345 |
-
"epoch": 1.1,
|
| 1346 |
-
"learning_rate": 5.35e-06,
|
| 1347 |
-
"loss": 0.1228,
|
| 1348 |
-
"step": 2220
|
| 1349 |
-
},
|
| 1350 |
-
{
|
| 1351 |
-
"epoch": 1.1,
|
| 1352 |
-
"learning_rate": 5.336111111111111e-06,
|
| 1353 |
-
"loss": 0.154,
|
| 1354 |
-
"step": 2230
|
| 1355 |
-
},
|
| 1356 |
-
{
|
| 1357 |
-
"epoch": 1.11,
|
| 1358 |
-
"learning_rate": 5.322222222222222e-06,
|
| 1359 |
-
"loss": 0.1745,
|
| 1360 |
-
"step": 2240
|
| 1361 |
-
},
|
| 1362 |
-
{
|
| 1363 |
-
"epoch": 1.11,
|
| 1364 |
-
"learning_rate": 5.308333333333333e-06,
|
| 1365 |
-
"loss": 0.1031,
|
| 1366 |
-
"step": 2250
|
| 1367 |
-
},
|
| 1368 |
-
{
|
| 1369 |
-
"epoch": 1.12,
|
| 1370 |
-
"learning_rate": 5.294444444444444e-06,
|
| 1371 |
-
"loss": 0.1359,
|
| 1372 |
-
"step": 2260
|
| 1373 |
-
},
|
| 1374 |
-
{
|
| 1375 |
-
"epoch": 1.12,
|
| 1376 |
-
"learning_rate": 5.280555555555556e-06,
|
| 1377 |
-
"loss": 0.1194,
|
| 1378 |
-
"step": 2270
|
| 1379 |
-
},
|
| 1380 |
-
{
|
| 1381 |
-
"epoch": 1.13,
|
| 1382 |
-
"learning_rate": 5.2666666666666665e-06,
|
| 1383 |
-
"loss": 0.1398,
|
| 1384 |
-
"step": 2280
|
| 1385 |
-
},
|
| 1386 |
-
{
|
| 1387 |
-
"epoch": 1.13,
|
| 1388 |
-
"learning_rate": 5.252777777777778e-06,
|
| 1389 |
-
"loss": 0.1277,
|
| 1390 |
-
"step": 2290
|
| 1391 |
-
},
|
| 1392 |
-
{
|
| 1393 |
-
"epoch": 1.14,
|
| 1394 |
-
"learning_rate": 5.2388888888888885e-06,
|
| 1395 |
-
"loss": 0.1121,
|
| 1396 |
-
"step": 2300
|
| 1397 |
-
},
|
| 1398 |
-
{
|
| 1399 |
-
"epoch": 1.14,
|
| 1400 |
-
"learning_rate": 5.224999999999999e-06,
|
| 1401 |
-
"loss": 0.1067,
|
| 1402 |
-
"step": 2310
|
| 1403 |
-
},
|
| 1404 |
-
{
|
| 1405 |
-
"epoch": 1.15,
|
| 1406 |
-
"learning_rate": 5.211111111111111e-06,
|
| 1407 |
-
"loss": 0.1101,
|
| 1408 |
-
"step": 2320
|
| 1409 |
-
},
|
| 1410 |
-
{
|
| 1411 |
-
"epoch": 1.15,
|
| 1412 |
-
"learning_rate": 5.197222222222222e-06,
|
| 1413 |
-
"loss": 0.1192,
|
| 1414 |
-
"step": 2330
|
| 1415 |
-
},
|
| 1416 |
-
{
|
| 1417 |
-
"epoch": 1.16,
|
| 1418 |
-
"learning_rate": 5.183333333333333e-06,
|
| 1419 |
-
"loss": 0.1055,
|
| 1420 |
-
"step": 2340
|
| 1421 |
-
},
|
| 1422 |
-
{
|
| 1423 |
-
"epoch": 1.16,
|
| 1424 |
-
"learning_rate": 5.169444444444444e-06,
|
| 1425 |
-
"loss": 0.1232,
|
| 1426 |
-
"step": 2350
|
| 1427 |
-
},
|
| 1428 |
-
{
|
| 1429 |
-
"epoch": 1.17,
|
| 1430 |
-
"learning_rate": 5.155555555555555e-06,
|
| 1431 |
-
"loss": 0.1096,
|
| 1432 |
-
"step": 2360
|
| 1433 |
-
},
|
| 1434 |
-
{
|
| 1435 |
-
"epoch": 1.17,
|
| 1436 |
-
"learning_rate": 5.141666666666666e-06,
|
| 1437 |
-
"loss": 0.0831,
|
| 1438 |
-
"step": 2370
|
| 1439 |
-
},
|
| 1440 |
-
{
|
| 1441 |
-
"epoch": 1.18,
|
| 1442 |
-
"learning_rate": 5.127777777777778e-06,
|
| 1443 |
-
"loss": 0.149,
|
| 1444 |
-
"step": 2380
|
| 1445 |
-
},
|
| 1446 |
-
{
|
| 1447 |
-
"epoch": 1.18,
|
| 1448 |
-
"learning_rate": 5.113888888888889e-06,
|
| 1449 |
-
"loss": 0.1328,
|
| 1450 |
-
"step": 2390
|
| 1451 |
-
},
|
| 1452 |
-
{
|
| 1453 |
-
"epoch": 1.19,
|
| 1454 |
-
"learning_rate": 5.0999999999999995e-06,
|
| 1455 |
-
"loss": 0.1193,
|
| 1456 |
-
"step": 2400
|
| 1457 |
-
},
|
| 1458 |
-
{
|
| 1459 |
-
"epoch": 1.19,
|
| 1460 |
-
"learning_rate": 5.086111111111111e-06,
|
| 1461 |
-
"loss": 0.1222,
|
| 1462 |
-
"step": 2410
|
| 1463 |
-
},
|
| 1464 |
-
{
|
| 1465 |
-
"epoch": 1.2,
|
| 1466 |
-
"learning_rate": 5.0722222222222215e-06,
|
| 1467 |
-
"loss": 0.1395,
|
| 1468 |
-
"step": 2420
|
| 1469 |
-
},
|
| 1470 |
-
{
|
| 1471 |
-
"epoch": 1.2,
|
| 1472 |
-
"eval_loss": 0.26611328125,
|
| 1473 |
-
"eval_runtime": 595.4698,
|
| 1474 |
-
"eval_samples_per_second": 40.229,
|
| 1475 |
-
"eval_steps_per_second": 5.03,
|
| 1476 |
-
"step": 2426
|
| 1477 |
-
},
|
| 1478 |
-
{
|
| 1479 |
-
"epoch": 1.2,
|
| 1480 |
-
"learning_rate": 5.058333333333334e-06,
|
| 1481 |
-
"loss": 0.1261,
|
| 1482 |
-
"step": 2430
|
| 1483 |
-
},
|
| 1484 |
-
{
|
| 1485 |
-
"epoch": 1.21,
|
| 1486 |
-
"learning_rate": 5.044444444444444e-06,
|
| 1487 |
-
"loss": 0.1416,
|
| 1488 |
-
"step": 2440
|
| 1489 |
-
},
|
| 1490 |
-
{
|
| 1491 |
-
"epoch": 1.21,
|
| 1492 |
-
"learning_rate": 5.030555555555556e-06,
|
| 1493 |
-
"loss": 0.1453,
|
| 1494 |
-
"step": 2450
|
| 1495 |
-
},
|
| 1496 |
-
{
|
| 1497 |
-
"epoch": 1.22,
|
| 1498 |
-
"learning_rate": 5.016666666666666e-06,
|
| 1499 |
-
"loss": 0.114,
|
| 1500 |
-
"step": 2460
|
| 1501 |
-
},
|
| 1502 |
-
{
|
| 1503 |
-
"epoch": 1.22,
|
| 1504 |
-
"learning_rate": 5.002777777777778e-06,
|
| 1505 |
-
"loss": 0.133,
|
| 1506 |
-
"step": 2470
|
| 1507 |
-
},
|
| 1508 |
-
{
|
| 1509 |
-
"epoch": 1.23,
|
| 1510 |
-
"learning_rate": 4.988888888888888e-06,
|
| 1511 |
-
"loss": 0.1207,
|
| 1512 |
-
"step": 2480
|
| 1513 |
-
},
|
| 1514 |
-
{
|
| 1515 |
-
"epoch": 1.23,
|
| 1516 |
-
"learning_rate": 4.975e-06,
|
| 1517 |
-
"loss": 0.1123,
|
| 1518 |
-
"step": 2490
|
| 1519 |
-
},
|
| 1520 |
-
{
|
| 1521 |
-
"epoch": 1.24,
|
| 1522 |
-
"learning_rate": 4.961111111111111e-06,
|
| 1523 |
-
"loss": 0.1039,
|
| 1524 |
-
"step": 2500
|
| 1525 |
-
},
|
| 1526 |
-
{
|
| 1527 |
-
"epoch": 1.24,
|
| 1528 |
-
"learning_rate": 4.947222222222222e-06,
|
| 1529 |
-
"loss": 0.091,
|
| 1530 |
-
"step": 2510
|
| 1531 |
-
},
|
| 1532 |
-
{
|
| 1533 |
-
"epoch": 1.25,
|
| 1534 |
-
"learning_rate": 4.933333333333333e-06,
|
| 1535 |
-
"loss": 0.1588,
|
| 1536 |
-
"step": 2520
|
| 1537 |
-
},
|
| 1538 |
-
{
|
| 1539 |
-
"epoch": 1.25,
|
| 1540 |
-
"learning_rate": 4.919444444444444e-06,
|
| 1541 |
-
"loss": 0.098,
|
| 1542 |
-
"step": 2530
|
| 1543 |
-
},
|
| 1544 |
-
{
|
| 1545 |
-
"epoch": 1.26,
|
| 1546 |
-
"learning_rate": 4.905555555555555e-06,
|
| 1547 |
-
"loss": 0.1033,
|
| 1548 |
-
"step": 2540
|
| 1549 |
-
},
|
| 1550 |
-
{
|
| 1551 |
-
"epoch": 1.26,
|
| 1552 |
-
"learning_rate": 4.891666666666667e-06,
|
| 1553 |
-
"loss": 0.1473,
|
| 1554 |
-
"step": 2550
|
| 1555 |
-
},
|
| 1556 |
-
{
|
| 1557 |
-
"epoch": 1.27,
|
| 1558 |
-
"learning_rate": 4.877777777777778e-06,
|
| 1559 |
-
"loss": 0.1331,
|
| 1560 |
-
"step": 2560
|
| 1561 |
-
},
|
| 1562 |
-
{
|
| 1563 |
-
"epoch": 1.27,
|
| 1564 |
-
"learning_rate": 4.863888888888889e-06,
|
| 1565 |
-
"loss": 0.1196,
|
| 1566 |
-
"step": 2570
|
| 1567 |
-
},
|
| 1568 |
-
{
|
| 1569 |
-
"epoch": 1.28,
|
| 1570 |
-
"learning_rate": 4.849999999999999e-06,
|
| 1571 |
-
"loss": 0.1379,
|
| 1572 |
-
"step": 2580
|
| 1573 |
-
},
|
| 1574 |
-
{
|
| 1575 |
-
"epoch": 1.28,
|
| 1576 |
-
"learning_rate": 4.836111111111111e-06,
|
| 1577 |
-
"loss": 0.124,
|
| 1578 |
-
"step": 2590
|
| 1579 |
-
},
|
| 1580 |
-
{
|
| 1581 |
-
"epoch": 1.29,
|
| 1582 |
-
"learning_rate": 4.822222222222222e-06,
|
| 1583 |
-
"loss": 0.1058,
|
| 1584 |
-
"step": 2600
|
| 1585 |
-
},
|
| 1586 |
-
{
|
| 1587 |
-
"epoch": 1.29,
|
| 1588 |
-
"learning_rate": 4.808333333333334e-06,
|
| 1589 |
-
"loss": 0.1132,
|
| 1590 |
-
"step": 2610
|
| 1591 |
-
},
|
| 1592 |
-
{
|
| 1593 |
-
"epoch": 1.3,
|
| 1594 |
-
"learning_rate": 4.794444444444444e-06,
|
| 1595 |
-
"loss": 0.1077,
|
| 1596 |
-
"step": 2620
|
| 1597 |
-
},
|
| 1598 |
-
{
|
| 1599 |
-
"epoch": 1.3,
|
| 1600 |
-
"learning_rate": 4.780555555555556e-06,
|
| 1601 |
-
"loss": 0.1266,
|
| 1602 |
-
"step": 2630
|
| 1603 |
-
},
|
| 1604 |
-
{
|
| 1605 |
-
"epoch": 1.31,
|
| 1606 |
-
"learning_rate": 4.766666666666666e-06,
|
| 1607 |
-
"loss": 0.1292,
|
| 1608 |
-
"step": 2640
|
| 1609 |
-
},
|
| 1610 |
-
{
|
| 1611 |
-
"epoch": 1.31,
|
| 1612 |
-
"learning_rate": 4.752777777777778e-06,
|
| 1613 |
-
"loss": 0.0969,
|
| 1614 |
-
"step": 2650
|
| 1615 |
-
},
|
| 1616 |
-
{
|
| 1617 |
-
"epoch": 1.32,
|
| 1618 |
-
"learning_rate": 4.738888888888889e-06,
|
| 1619 |
-
"loss": 0.0946,
|
| 1620 |
-
"step": 2660
|
| 1621 |
-
},
|
| 1622 |
-
{
|
| 1623 |
-
"epoch": 1.32,
|
| 1624 |
-
"learning_rate": 4.725e-06,
|
| 1625 |
-
"loss": 0.1479,
|
| 1626 |
-
"step": 2670
|
| 1627 |
-
},
|
| 1628 |
-
{
|
| 1629 |
-
"epoch": 1.33,
|
| 1630 |
-
"learning_rate": 4.711111111111111e-06,
|
| 1631 |
-
"loss": 0.133,
|
| 1632 |
-
"step": 2680
|
| 1633 |
-
},
|
| 1634 |
-
{
|
| 1635 |
-
"epoch": 1.33,
|
| 1636 |
-
"learning_rate": 4.697222222222222e-06,
|
| 1637 |
-
"loss": 0.1118,
|
| 1638 |
-
"step": 2690
|
| 1639 |
-
},
|
| 1640 |
-
{
|
| 1641 |
-
"epoch": 1.34,
|
| 1642 |
-
"learning_rate": 4.683333333333333e-06,
|
| 1643 |
-
"loss": 0.1362,
|
| 1644 |
-
"step": 2700
|
| 1645 |
-
},
|
| 1646 |
-
{
|
| 1647 |
-
"epoch": 1.34,
|
| 1648 |
-
"learning_rate": 4.669444444444444e-06,
|
| 1649 |
-
"loss": 0.1384,
|
| 1650 |
-
"step": 2710
|
| 1651 |
-
},
|
| 1652 |
-
{
|
| 1653 |
-
"epoch": 1.35,
|
| 1654 |
-
"learning_rate": 4.655555555555556e-06,
|
| 1655 |
-
"loss": 0.1275,
|
| 1656 |
-
"step": 2720
|
| 1657 |
-
},
|
| 1658 |
-
{
|
| 1659 |
-
"epoch": 1.35,
|
| 1660 |
-
"learning_rate": 4.6416666666666666e-06,
|
| 1661 |
-
"loss": 0.1416,
|
| 1662 |
-
"step": 2730
|
| 1663 |
-
},
|
| 1664 |
-
{
|
| 1665 |
-
"epoch": 1.36,
|
| 1666 |
-
"learning_rate": 4.627777777777778e-06,
|
| 1667 |
-
"loss": 0.1119,
|
| 1668 |
-
"step": 2740
|
| 1669 |
-
},
|
| 1670 |
-
{
|
| 1671 |
-
"epoch": 1.36,
|
| 1672 |
-
"learning_rate": 4.6138888888888886e-06,
|
| 1673 |
-
"loss": 0.1079,
|
| 1674 |
-
"step": 2750
|
| 1675 |
-
},
|
| 1676 |
-
{
|
| 1677 |
-
"epoch": 1.37,
|
| 1678 |
-
"learning_rate": 4.599999999999999e-06,
|
| 1679 |
-
"loss": 0.1197,
|
| 1680 |
-
"step": 2760
|
| 1681 |
-
},
|
| 1682 |
-
{
|
| 1683 |
-
"epoch": 1.37,
|
| 1684 |
-
"learning_rate": 4.5861111111111114e-06,
|
| 1685 |
-
"loss": 0.1115,
|
| 1686 |
-
"step": 2770
|
| 1687 |
-
},
|
| 1688 |
-
{
|
| 1689 |
-
"epoch": 1.38,
|
| 1690 |
-
"learning_rate": 4.572222222222222e-06,
|
| 1691 |
-
"loss": 0.1023,
|
| 1692 |
-
"step": 2780
|
| 1693 |
-
},
|
| 1694 |
-
{
|
| 1695 |
-
"epoch": 1.38,
|
| 1696 |
-
"learning_rate": 4.5583333333333335e-06,
|
| 1697 |
-
"loss": 0.1109,
|
| 1698 |
-
"step": 2790
|
| 1699 |
-
},
|
| 1700 |
-
{
|
| 1701 |
-
"epoch": 1.39,
|
| 1702 |
-
"learning_rate": 4.544444444444444e-06,
|
| 1703 |
-
"loss": 0.1184,
|
| 1704 |
-
"step": 2800
|
| 1705 |
-
},
|
| 1706 |
-
{
|
| 1707 |
-
"epoch": 1.39,
|
| 1708 |
-
"learning_rate": 4.5305555555555555e-06,
|
| 1709 |
-
"loss": 0.1103,
|
| 1710 |
-
"step": 2810
|
| 1711 |
-
},
|
| 1712 |
-
{
|
| 1713 |
-
"epoch": 1.4,
|
| 1714 |
-
"learning_rate": 4.516666666666666e-06,
|
| 1715 |
-
"loss": 0.1074,
|
| 1716 |
-
"step": 2820
|
| 1717 |
-
},
|
| 1718 |
-
{
|
| 1719 |
-
"epoch": 1.4,
|
| 1720 |
-
"learning_rate": 4.502777777777778e-06,
|
| 1721 |
-
"loss": 0.1139,
|
| 1722 |
-
"step": 2830
|
| 1723 |
-
},
|
| 1724 |
-
{
|
| 1725 |
-
"epoch": 1.4,
|
| 1726 |
-
"learning_rate": 4.488888888888889e-06,
|
| 1727 |
-
"loss": 0.1107,
|
| 1728 |
-
"step": 2840
|
| 1729 |
-
},
|
| 1730 |
-
{
|
| 1731 |
-
"epoch": 1.41,
|
| 1732 |
-
"learning_rate": 4.4749999999999995e-06,
|
| 1733 |
-
"loss": 0.0777,
|
| 1734 |
-
"step": 2850
|
| 1735 |
-
},
|
| 1736 |
-
{
|
| 1737 |
-
"epoch": 1.41,
|
| 1738 |
-
"learning_rate": 4.461111111111111e-06,
|
| 1739 |
-
"loss": 0.1348,
|
| 1740 |
-
"step": 2860
|
| 1741 |
-
},
|
| 1742 |
-
{
|
| 1743 |
-
"epoch": 1.42,
|
| 1744 |
-
"learning_rate": 4.4472222222222215e-06,
|
| 1745 |
-
"loss": 0.1362,
|
| 1746 |
-
"step": 2870
|
| 1747 |
-
},
|
| 1748 |
-
{
|
| 1749 |
-
"epoch": 1.42,
|
| 1750 |
-
"learning_rate": 4.433333333333333e-06,
|
| 1751 |
-
"loss": 0.1374,
|
| 1752 |
-
"step": 2880
|
| 1753 |
-
},
|
| 1754 |
-
{
|
| 1755 |
-
"epoch": 1.43,
|
| 1756 |
-
"learning_rate": 4.419444444444444e-06,
|
| 1757 |
-
"loss": 0.1135,
|
| 1758 |
-
"step": 2890
|
| 1759 |
-
},
|
| 1760 |
-
{
|
| 1761 |
-
"epoch": 1.43,
|
| 1762 |
-
"learning_rate": 4.405555555555556e-06,
|
| 1763 |
-
"loss": 0.1166,
|
| 1764 |
-
"step": 2900
|
| 1765 |
-
},
|
| 1766 |
-
{
|
| 1767 |
-
"epoch": 1.44,
|
| 1768 |
-
"learning_rate": 4.391666666666666e-06,
|
| 1769 |
-
"loss": 0.1202,
|
| 1770 |
-
"step": 2910
|
| 1771 |
-
},
|
| 1772 |
-
{
|
| 1773 |
-
"epoch": 1.44,
|
| 1774 |
-
"learning_rate": 4.377777777777778e-06,
|
| 1775 |
-
"loss": 0.1455,
|
| 1776 |
-
"step": 2920
|
| 1777 |
-
},
|
| 1778 |
-
{
|
| 1779 |
-
"epoch": 1.45,
|
| 1780 |
-
"learning_rate": 4.3638888888888884e-06,
|
| 1781 |
-
"loss": 0.0831,
|
| 1782 |
-
"step": 2930
|
| 1783 |
-
},
|
| 1784 |
-
{
|
| 1785 |
-
"epoch": 1.45,
|
| 1786 |
-
"learning_rate": 4.35e-06,
|
| 1787 |
-
"loss": 0.1211,
|
| 1788 |
-
"step": 2940
|
| 1789 |
-
},
|
| 1790 |
-
{
|
| 1791 |
-
"epoch": 1.46,
|
| 1792 |
-
"learning_rate": 4.336111111111111e-06,
|
| 1793 |
-
"loss": 0.1194,
|
| 1794 |
-
"step": 2950
|
| 1795 |
-
},
|
| 1796 |
-
{
|
| 1797 |
-
"epoch": 1.46,
|
| 1798 |
-
"learning_rate": 4.322222222222222e-06,
|
| 1799 |
-
"loss": 0.1124,
|
| 1800 |
-
"step": 2960
|
| 1801 |
-
},
|
| 1802 |
-
{
|
| 1803 |
-
"epoch": 1.47,
|
| 1804 |
-
"learning_rate": 4.308333333333333e-06,
|
| 1805 |
-
"loss": 0.0947,
|
| 1806 |
-
"step": 2970
|
| 1807 |
-
},
|
| 1808 |
-
{
|
| 1809 |
-
"epoch": 1.47,
|
| 1810 |
-
"learning_rate": 4.294444444444444e-06,
|
| 1811 |
-
"loss": 0.1152,
|
| 1812 |
-
"step": 2980
|
| 1813 |
-
},
|
| 1814 |
-
{
|
| 1815 |
-
"epoch": 1.48,
|
| 1816 |
-
"learning_rate": 4.280555555555555e-06,
|
| 1817 |
-
"loss": 0.0858,
|
| 1818 |
-
"step": 2990
|
| 1819 |
-
},
|
| 1820 |
-
{
|
| 1821 |
-
"epoch": 1.48,
|
| 1822 |
-
"learning_rate": 4.266666666666667e-06,
|
| 1823 |
-
"loss": 0.087,
|
| 1824 |
-
"step": 3000
|
| 1825 |
-
},
|
| 1826 |
-
{
|
| 1827 |
-
"epoch": 1.49,
|
| 1828 |
-
"learning_rate": 4.252777777777778e-06,
|
| 1829 |
-
"loss": 0.1237,
|
| 1830 |
-
"step": 3010
|
| 1831 |
-
},
|
| 1832 |
-
{
|
| 1833 |
-
"epoch": 1.49,
|
| 1834 |
-
"learning_rate": 4.238888888888889e-06,
|
| 1835 |
-
"loss": 0.0809,
|
| 1836 |
-
"step": 3020
|
| 1837 |
-
},
|
| 1838 |
-
{
|
| 1839 |
-
"epoch": 1.5,
|
| 1840 |
-
"learning_rate": 4.224999999999999e-06,
|
| 1841 |
-
"loss": 0.1022,
|
| 1842 |
-
"step": 3030
|
| 1843 |
-
},
|
| 1844 |
-
{
|
| 1845 |
-
"epoch": 1.5,
|
| 1846 |
-
"learning_rate": 4.211111111111111e-06,
|
| 1847 |
-
"loss": 0.101,
|
| 1848 |
-
"step": 3040
|
| 1849 |
-
},
|
| 1850 |
-
{
|
| 1851 |
-
"epoch": 1.51,
|
| 1852 |
-
"learning_rate": 4.197222222222221e-06,
|
| 1853 |
-
"loss": 0.1327,
|
| 1854 |
-
"step": 3050
|
| 1855 |
-
},
|
| 1856 |
-
{
|
| 1857 |
-
"epoch": 1.51,
|
| 1858 |
-
"learning_rate": 4.183333333333334e-06,
|
| 1859 |
-
"loss": 0.1056,
|
| 1860 |
-
"step": 3060
|
| 1861 |
-
},
|
| 1862 |
-
{
|
| 1863 |
-
"epoch": 1.52,
|
| 1864 |
-
"learning_rate": 4.169444444444444e-06,
|
| 1865 |
-
"loss": 0.1129,
|
| 1866 |
-
"step": 3070
|
| 1867 |
-
},
|
| 1868 |
-
{
|
| 1869 |
-
"epoch": 1.52,
|
| 1870 |
-
"learning_rate": 4.155555555555556e-06,
|
| 1871 |
-
"loss": 0.1119,
|
| 1872 |
-
"step": 3080
|
| 1873 |
-
},
|
| 1874 |
-
{
|
| 1875 |
-
"epoch": 1.53,
|
| 1876 |
-
"learning_rate": 4.141666666666666e-06,
|
| 1877 |
-
"loss": 0.1287,
|
| 1878 |
-
"step": 3090
|
| 1879 |
-
},
|
| 1880 |
-
{
|
| 1881 |
-
"epoch": 1.53,
|
| 1882 |
-
"learning_rate": 4.127777777777778e-06,
|
| 1883 |
-
"loss": 0.1179,
|
| 1884 |
-
"step": 3100
|
| 1885 |
-
},
|
| 1886 |
-
{
|
| 1887 |
-
"epoch": 1.54,
|
| 1888 |
-
"learning_rate": 4.113888888888889e-06,
|
| 1889 |
-
"loss": 0.1152,
|
| 1890 |
-
"step": 3110
|
| 1891 |
-
},
|
| 1892 |
-
{
|
| 1893 |
-
"epoch": 1.54,
|
| 1894 |
-
"learning_rate": 4.1e-06,
|
| 1895 |
-
"loss": 0.0833,
|
| 1896 |
-
"step": 3120
|
| 1897 |
-
},
|
| 1898 |
-
{
|
| 1899 |
-
"epoch": 1.55,
|
| 1900 |
-
"learning_rate": 4.086111111111111e-06,
|
| 1901 |
-
"loss": 0.1304,
|
| 1902 |
-
"step": 3130
|
| 1903 |
-
},
|
| 1904 |
-
{
|
| 1905 |
-
"epoch": 1.55,
|
| 1906 |
-
"learning_rate": 4.072222222222222e-06,
|
| 1907 |
-
"loss": 0.0813,
|
| 1908 |
-
"step": 3140
|
| 1909 |
-
},
|
| 1910 |
-
{
|
| 1911 |
-
"epoch": 1.56,
|
| 1912 |
-
"learning_rate": 4.058333333333333e-06,
|
| 1913 |
-
"loss": 0.1068,
|
| 1914 |
-
"step": 3150
|
| 1915 |
-
},
|
| 1916 |
-
{
|
| 1917 |
-
"epoch": 1.56,
|
| 1918 |
-
"learning_rate": 4.044444444444444e-06,
|
| 1919 |
-
"loss": 0.0998,
|
| 1920 |
-
"step": 3160
|
| 1921 |
-
},
|
| 1922 |
-
{
|
| 1923 |
-
"epoch": 1.57,
|
| 1924 |
-
"learning_rate": 4.030555555555556e-06,
|
| 1925 |
-
"loss": 0.1109,
|
| 1926 |
-
"step": 3170
|
| 1927 |
-
},
|
| 1928 |
-
{
|
| 1929 |
-
"epoch": 1.57,
|
| 1930 |
-
"learning_rate": 4.016666666666667e-06,
|
| 1931 |
-
"loss": 0.1193,
|
| 1932 |
-
"step": 3180
|
| 1933 |
-
},
|
| 1934 |
-
{
|
| 1935 |
-
"epoch": 1.58,
|
| 1936 |
-
"learning_rate": 4.002777777777778e-06,
|
| 1937 |
-
"loss": 0.1234,
|
| 1938 |
-
"step": 3190
|
| 1939 |
-
},
|
| 1940 |
-
{
|
| 1941 |
-
"epoch": 1.58,
|
| 1942 |
-
"learning_rate": 3.988888888888889e-06,
|
| 1943 |
-
"loss": 0.1049,
|
| 1944 |
-
"step": 3200
|
| 1945 |
-
},
|
| 1946 |
-
{
|
| 1947 |
-
"epoch": 1.59,
|
| 1948 |
-
"learning_rate": 3.975e-06,
|
| 1949 |
-
"loss": 0.1017,
|
| 1950 |
-
"step": 3210
|
| 1951 |
-
},
|
| 1952 |
-
{
|
| 1953 |
-
"epoch": 1.59,
|
| 1954 |
-
"learning_rate": 3.9611111111111115e-06,
|
| 1955 |
-
"loss": 0.1044,
|
| 1956 |
-
"step": 3220
|
| 1957 |
-
},
|
| 1958 |
-
{
|
| 1959 |
-
"epoch": 1.6,
|
| 1960 |
-
"learning_rate": 3.947222222222222e-06,
|
| 1961 |
-
"loss": 0.1263,
|
| 1962 |
-
"step": 3230
|
| 1963 |
-
},
|
| 1964 |
-
{
|
| 1965 |
-
"epoch": 1.6,
|
| 1966 |
-
"learning_rate": 3.933333333333333e-06,
|
| 1967 |
-
"loss": 0.1419,
|
| 1968 |
-
"step": 3240
|
| 1969 |
-
},
|
| 1970 |
-
{
|
| 1971 |
-
"epoch": 1.61,
|
| 1972 |
-
"learning_rate": 3.919444444444444e-06,
|
| 1973 |
-
"loss": 0.1294,
|
| 1974 |
-
"step": 3250
|
| 1975 |
-
},
|
| 1976 |
-
{
|
| 1977 |
-
"epoch": 1.61,
|
| 1978 |
-
"learning_rate": 3.9055555555555555e-06,
|
| 1979 |
-
"loss": 0.0939,
|
| 1980 |
-
"step": 3260
|
| 1981 |
-
},
|
| 1982 |
-
{
|
| 1983 |
-
"epoch": 1.62,
|
| 1984 |
-
"learning_rate": 3.891666666666666e-06,
|
| 1985 |
-
"loss": 0.1374,
|
| 1986 |
-
"step": 3270
|
| 1987 |
-
},
|
| 1988 |
-
{
|
| 1989 |
-
"epoch": 1.62,
|
| 1990 |
-
"learning_rate": 3.8777777777777775e-06,
|
| 1991 |
-
"loss": 0.0959,
|
| 1992 |
-
"step": 3280
|
| 1993 |
-
},
|
| 1994 |
-
{
|
| 1995 |
-
"epoch": 1.63,
|
| 1996 |
-
"learning_rate": 3.863888888888889e-06,
|
| 1997 |
-
"loss": 0.1009,
|
| 1998 |
-
"step": 3290
|
| 1999 |
-
},
|
| 2000 |
-
{
|
| 2001 |
-
"epoch": 1.63,
|
| 2002 |
-
"learning_rate": 3.8499999999999996e-06,
|
| 2003 |
-
"loss": 0.1305,
|
| 2004 |
-
"step": 3300
|
| 2005 |
-
},
|
| 2006 |
-
{
|
| 2007 |
-
"epoch": 1.64,
|
| 2008 |
-
"learning_rate": 3.836111111111111e-06,
|
| 2009 |
-
"loss": 0.1303,
|
| 2010 |
-
"step": 3310
|
| 2011 |
-
},
|
| 2012 |
-
{
|
| 2013 |
-
"epoch": 1.64,
|
| 2014 |
-
"learning_rate": 3.8222222222222224e-06,
|
| 2015 |
-
"loss": 0.1282,
|
| 2016 |
-
"step": 3320
|
| 2017 |
-
},
|
| 2018 |
-
{
|
| 2019 |
-
"epoch": 1.65,
|
| 2020 |
-
"learning_rate": 3.808333333333333e-06,
|
| 2021 |
-
"loss": 0.1053,
|
| 2022 |
-
"step": 3330
|
| 2023 |
-
},
|
| 2024 |
-
{
|
| 2025 |
-
"epoch": 1.65,
|
| 2026 |
-
"learning_rate": 3.794444444444444e-06,
|
| 2027 |
-
"loss": 0.1042,
|
| 2028 |
-
"step": 3340
|
| 2029 |
-
},
|
| 2030 |
-
{
|
| 2031 |
-
"epoch": 1.66,
|
| 2032 |
-
"learning_rate": 3.7805555555555555e-06,
|
| 2033 |
-
"loss": 0.0849,
|
| 2034 |
-
"step": 3350
|
| 2035 |
-
},
|
| 2036 |
-
{
|
| 2037 |
-
"epoch": 1.66,
|
| 2038 |
-
"learning_rate": 3.7666666666666665e-06,
|
| 2039 |
-
"loss": 0.1274,
|
| 2040 |
-
"step": 3360
|
| 2041 |
-
},
|
| 2042 |
-
{
|
| 2043 |
-
"epoch": 1.67,
|
| 2044 |
-
"learning_rate": 3.7527777777777775e-06,
|
| 2045 |
-
"loss": 0.1228,
|
| 2046 |
-
"step": 3370
|
| 2047 |
-
},
|
| 2048 |
-
{
|
| 2049 |
-
"epoch": 1.67,
|
| 2050 |
-
"learning_rate": 3.738888888888889e-06,
|
| 2051 |
-
"loss": 0.1129,
|
| 2052 |
-
"step": 3380
|
| 2053 |
-
},
|
| 2054 |
-
{
|
| 2055 |
-
"epoch": 1.68,
|
| 2056 |
-
"learning_rate": 3.725e-06,
|
| 2057 |
-
"loss": 0.1128,
|
| 2058 |
-
"step": 3390
|
| 2059 |
-
},
|
| 2060 |
-
{
|
| 2061 |
-
"epoch": 1.68,
|
| 2062 |
-
"learning_rate": 3.711111111111111e-06,
|
| 2063 |
-
"loss": 0.1317,
|
| 2064 |
-
"step": 3400
|
| 2065 |
-
},
|
| 2066 |
-
{
|
| 2067 |
-
"epoch": 1.69,
|
| 2068 |
-
"learning_rate": 3.6972222222222224e-06,
|
| 2069 |
-
"loss": 0.1246,
|
| 2070 |
-
"step": 3410
|
| 2071 |
-
},
|
| 2072 |
-
{
|
| 2073 |
-
"epoch": 1.69,
|
| 2074 |
-
"learning_rate": 3.683333333333333e-06,
|
| 2075 |
-
"loss": 0.0806,
|
| 2076 |
-
"step": 3420
|
| 2077 |
-
},
|
| 2078 |
-
{
|
| 2079 |
-
"epoch": 1.7,
|
| 2080 |
-
"learning_rate": 3.669444444444444e-06,
|
| 2081 |
-
"loss": 0.119,
|
| 2082 |
-
"step": 3430
|
| 2083 |
-
},
|
| 2084 |
-
{
|
| 2085 |
-
"epoch": 1.7,
|
| 2086 |
-
"learning_rate": 3.6555555555555554e-06,
|
| 2087 |
-
"loss": 0.0893,
|
| 2088 |
-
"step": 3440
|
| 2089 |
-
},
|
| 2090 |
-
{
|
| 2091 |
-
"epoch": 1.71,
|
| 2092 |
-
"learning_rate": 3.6416666666666664e-06,
|
| 2093 |
-
"loss": 0.1058,
|
| 2094 |
-
"step": 3450
|
| 2095 |
-
},
|
| 2096 |
-
{
|
| 2097 |
-
"epoch": 1.71,
|
| 2098 |
-
"learning_rate": 3.6277777777777774e-06,
|
| 2099 |
-
"loss": 0.0944,
|
| 2100 |
-
"step": 3460
|
| 2101 |
-
},
|
| 2102 |
-
{
|
| 2103 |
-
"epoch": 1.72,
|
| 2104 |
-
"learning_rate": 3.613888888888889e-06,
|
| 2105 |
-
"loss": 0.126,
|
| 2106 |
-
"step": 3470
|
| 2107 |
-
},
|
| 2108 |
-
{
|
| 2109 |
-
"epoch": 1.72,
|
| 2110 |
-
"learning_rate": 3.6e-06,
|
| 2111 |
-
"loss": 0.1104,
|
| 2112 |
-
"step": 3480
|
| 2113 |
-
},
|
| 2114 |
-
{
|
| 2115 |
-
"epoch": 1.73,
|
| 2116 |
-
"learning_rate": 3.5861111111111113e-06,
|
| 2117 |
-
"loss": 0.1108,
|
| 2118 |
-
"step": 3490
|
| 2119 |
-
},
|
| 2120 |
-
{
|
| 2121 |
-
"epoch": 1.73,
|
| 2122 |
-
"learning_rate": 3.5722222222222223e-06,
|
| 2123 |
-
"loss": 0.1197,
|
| 2124 |
-
"step": 3500
|
| 2125 |
-
},
|
| 2126 |
-
{
|
| 2127 |
-
"epoch": 1.74,
|
| 2128 |
-
"learning_rate": 3.558333333333333e-06,
|
| 2129 |
-
"loss": 0.1182,
|
| 2130 |
-
"step": 3510
|
| 2131 |
-
},
|
| 2132 |
-
{
|
| 2133 |
-
"epoch": 1.74,
|
| 2134 |
-
"learning_rate": 3.5444444444444443e-06,
|
| 2135 |
-
"loss": 0.0988,
|
| 2136 |
-
"step": 3520
|
| 2137 |
-
},
|
| 2138 |
-
{
|
| 2139 |
-
"epoch": 1.75,
|
| 2140 |
-
"learning_rate": 3.5305555555555553e-06,
|
| 2141 |
-
"loss": 0.0949,
|
| 2142 |
-
"step": 3530
|
| 2143 |
-
},
|
| 2144 |
-
{
|
| 2145 |
-
"epoch": 1.75,
|
| 2146 |
-
"learning_rate": 3.5166666666666663e-06,
|
| 2147 |
-
"loss": 0.1102,
|
| 2148 |
-
"step": 3540
|
| 2149 |
-
},
|
| 2150 |
-
{
|
| 2151 |
-
"epoch": 1.76,
|
| 2152 |
-
"learning_rate": 3.5027777777777777e-06,
|
| 2153 |
-
"loss": 0.1203,
|
| 2154 |
-
"step": 3550
|
| 2155 |
-
},
|
| 2156 |
-
{
|
| 2157 |
-
"epoch": 1.76,
|
| 2158 |
-
"learning_rate": 3.4888888888888888e-06,
|
| 2159 |
-
"loss": 0.1343,
|
| 2160 |
-
"step": 3560
|
| 2161 |
-
},
|
| 2162 |
-
{
|
| 2163 |
-
"epoch": 1.77,
|
| 2164 |
-
"learning_rate": 3.4749999999999998e-06,
|
| 2165 |
-
"loss": 0.0851,
|
| 2166 |
-
"step": 3570
|
| 2167 |
-
},
|
| 2168 |
-
{
|
| 2169 |
-
"epoch": 1.77,
|
| 2170 |
-
"learning_rate": 3.461111111111111e-06,
|
| 2171 |
-
"loss": 0.1181,
|
| 2172 |
-
"step": 3580
|
| 2173 |
-
},
|
| 2174 |
-
{
|
| 2175 |
-
"epoch": 1.78,
|
| 2176 |
-
"learning_rate": 3.447222222222222e-06,
|
| 2177 |
-
"loss": 0.0931,
|
| 2178 |
-
"step": 3590
|
| 2179 |
-
},
|
| 2180 |
-
{
|
| 2181 |
-
"epoch": 1.78,
|
| 2182 |
-
"learning_rate": 3.433333333333333e-06,
|
| 2183 |
-
"loss": 0.1068,
|
| 2184 |
-
"step": 3600
|
| 2185 |
-
},
|
| 2186 |
-
{
|
| 2187 |
-
"epoch": 1.79,
|
| 2188 |
-
"learning_rate": 3.4194444444444442e-06,
|
| 2189 |
-
"loss": 0.0884,
|
| 2190 |
-
"step": 3610
|
| 2191 |
-
},
|
| 2192 |
-
{
|
| 2193 |
-
"epoch": 1.79,
|
| 2194 |
-
"learning_rate": 3.4055555555555552e-06,
|
| 2195 |
-
"loss": 0.1326,
|
| 2196 |
-
"step": 3620
|
| 2197 |
-
},
|
| 2198 |
-
{
|
| 2199 |
-
"epoch": 1.8,
|
| 2200 |
-
"learning_rate": 3.3916666666666667e-06,
|
| 2201 |
-
"loss": 0.1307,
|
| 2202 |
-
"step": 3630
|
| 2203 |
-
},
|
| 2204 |
-
{
|
| 2205 |
-
"epoch": 1.8,
|
| 2206 |
-
"eval_loss": 0.249267578125,
|
| 2207 |
-
"eval_runtime": 590.255,
|
| 2208 |
-
"eval_samples_per_second": 40.584,
|
| 2209 |
-
"eval_steps_per_second": 5.074,
|
| 2210 |
-
"step": 3639
|
| 2211 |
-
}
|
| 2212 |
-
],
|
| 2213 |
-
"max_steps": 6063,
|
| 2214 |
-
"num_train_epochs": 3,
|
| 2215 |
-
"total_flos": 134441240494080.0,
|
| 2216 |
-
"trial_name": null,
|
| 2217 |
-
"trial_params": null
|
| 2218 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
training_args.bin
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:c42f106339a0328c004e4952494046976bb21234b5589de38804b01f680386c0
|
| 3 |
-
size 5115
|
|
|
|
|
|
|
|
|
|
|
|
zero_to_fp32.py
DELETED
|
@@ -1,578 +0,0 @@
|
|
| 1 |
-
#!/usr/bin/env python
|
| 2 |
-
|
| 3 |
-
# Copyright (c) Microsoft Corporation.
|
| 4 |
-
# SPDX-License-Identifier: Apache-2.0
|
| 5 |
-
|
| 6 |
-
# DeepSpeed Team
|
| 7 |
-
|
| 8 |
-
# This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
|
| 9 |
-
# copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
|
| 10 |
-
# the future. Once extracted, the weights don't require DeepSpeed and can be used in any
|
| 11 |
-
# application.
|
| 12 |
-
#
|
| 13 |
-
# example: python zero_to_fp32.py . pytorch_model.bin
|
| 14 |
-
|
| 15 |
-
import argparse
|
| 16 |
-
import torch
|
| 17 |
-
import glob
|
| 18 |
-
import math
|
| 19 |
-
import os
|
| 20 |
-
import re
|
| 21 |
-
from collections import OrderedDict
|
| 22 |
-
from dataclasses import dataclass
|
| 23 |
-
|
| 24 |
-
# while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
|
| 25 |
-
# DeepSpeed data structures it has to be available in the current python environment.
|
| 26 |
-
from deepspeed.utils import logger
|
| 27 |
-
from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
|
| 28 |
-
FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
|
| 29 |
-
FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
@dataclass
|
| 33 |
-
class zero_model_state:
|
| 34 |
-
buffers: dict()
|
| 35 |
-
param_shapes: dict()
|
| 36 |
-
shared_params: list
|
| 37 |
-
ds_version: int
|
| 38 |
-
frozen_param_shapes: dict()
|
| 39 |
-
frozen_param_fragments: dict()
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
debug = 0
|
| 43 |
-
|
| 44 |
-
# load to cpu
|
| 45 |
-
device = torch.device('cpu')
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def atoi(text):
|
| 49 |
-
return int(text) if text.isdigit() else text
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
def natural_keys(text):
|
| 53 |
-
'''
|
| 54 |
-
alist.sort(key=natural_keys) sorts in human order
|
| 55 |
-
http://nedbatchelder.com/blog/200712/human_sorting.html
|
| 56 |
-
(See Toothy's implementation in the comments)
|
| 57 |
-
'''
|
| 58 |
-
return [atoi(c) for c in re.split(r'(\d+)', text)]
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
def get_model_state_file(checkpoint_dir, zero_stage):
|
| 62 |
-
if not os.path.isdir(checkpoint_dir):
|
| 63 |
-
raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
|
| 64 |
-
|
| 65 |
-
# there should be only one file
|
| 66 |
-
if zero_stage == 2:
|
| 67 |
-
file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
|
| 68 |
-
elif zero_stage == 3:
|
| 69 |
-
file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
|
| 70 |
-
|
| 71 |
-
if not os.path.exists(file):
|
| 72 |
-
raise FileNotFoundError(f"can't find model states file at '{file}'")
|
| 73 |
-
|
| 74 |
-
return file
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
def get_checkpoint_files(checkpoint_dir, glob_pattern):
|
| 78 |
-
# XXX: need to test that this simple glob rule works for multi-node setup too
|
| 79 |
-
ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
|
| 80 |
-
|
| 81 |
-
if len(ckpt_files) == 0:
|
| 82 |
-
raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
|
| 83 |
-
|
| 84 |
-
return ckpt_files
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
def get_optim_files(checkpoint_dir):
|
| 88 |
-
return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
def get_model_state_files(checkpoint_dir):
|
| 92 |
-
return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
def parse_model_states(files):
|
| 96 |
-
zero_model_states = []
|
| 97 |
-
for file in files:
|
| 98 |
-
state_dict = torch.load(file, map_location=device)
|
| 99 |
-
|
| 100 |
-
if BUFFER_NAMES not in state_dict:
|
| 101 |
-
raise ValueError(f"{file} is not a model state checkpoint")
|
| 102 |
-
buffer_names = state_dict[BUFFER_NAMES]
|
| 103 |
-
if debug:
|
| 104 |
-
print("Found buffers:", buffer_names)
|
| 105 |
-
|
| 106 |
-
# recover just the buffers while restoring them to fp32 if they were saved in fp16
|
| 107 |
-
buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
|
| 108 |
-
param_shapes = state_dict[PARAM_SHAPES]
|
| 109 |
-
|
| 110 |
-
# collect parameters that are included in param_shapes
|
| 111 |
-
param_names = []
|
| 112 |
-
for s in param_shapes:
|
| 113 |
-
for name in s.keys():
|
| 114 |
-
param_names.append(name)
|
| 115 |
-
|
| 116 |
-
# update with frozen parameters
|
| 117 |
-
frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
|
| 118 |
-
if frozen_param_shapes is not None:
|
| 119 |
-
if debug:
|
| 120 |
-
print(f"Found frozen_param_shapes: {frozen_param_shapes}")
|
| 121 |
-
param_names += list(frozen_param_shapes.keys())
|
| 122 |
-
|
| 123 |
-
# handle shared params
|
| 124 |
-
shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
|
| 125 |
-
|
| 126 |
-
ds_version = state_dict.get(DS_VERSION, None)
|
| 127 |
-
|
| 128 |
-
frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
|
| 129 |
-
|
| 130 |
-
z_model_state = zero_model_state(buffers=buffers,
|
| 131 |
-
param_shapes=param_shapes,
|
| 132 |
-
shared_params=shared_params,
|
| 133 |
-
ds_version=ds_version,
|
| 134 |
-
frozen_param_shapes=frozen_param_shapes,
|
| 135 |
-
frozen_param_fragments=frozen_param_fragments)
|
| 136 |
-
zero_model_states.append(z_model_state)
|
| 137 |
-
|
| 138 |
-
return zero_model_states
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
def parse_optim_states(files, ds_checkpoint_dir):
|
| 142 |
-
|
| 143 |
-
total_files = len(files)
|
| 144 |
-
state_dicts = []
|
| 145 |
-
for f in files:
|
| 146 |
-
state_dicts.append(torch.load(f, map_location=device))
|
| 147 |
-
|
| 148 |
-
if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
|
| 149 |
-
raise ValueError(f"{files[0]} is not a zero checkpoint")
|
| 150 |
-
zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
|
| 151 |
-
world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
|
| 152 |
-
|
| 153 |
-
# For ZeRO-2 each param group can have different partition_count as data parallelism for expert
|
| 154 |
-
# parameters can be different from data parallelism for non-expert parameters. So we can just
|
| 155 |
-
# use the max of the partition_count to get the dp world_size.
|
| 156 |
-
|
| 157 |
-
if type(world_size) is list:
|
| 158 |
-
world_size = max(world_size)
|
| 159 |
-
|
| 160 |
-
if world_size != total_files:
|
| 161 |
-
raise ValueError(
|
| 162 |
-
f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
|
| 163 |
-
"Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
|
| 164 |
-
)
|
| 165 |
-
|
| 166 |
-
# the groups are named differently in each stage
|
| 167 |
-
if zero_stage == 2:
|
| 168 |
-
fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
|
| 169 |
-
elif zero_stage == 3:
|
| 170 |
-
fp32_groups_key = FP32_FLAT_GROUPS
|
| 171 |
-
else:
|
| 172 |
-
raise ValueError(f"unknown zero stage {zero_stage}")
|
| 173 |
-
|
| 174 |
-
if zero_stage == 2:
|
| 175 |
-
fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
|
| 176 |
-
elif zero_stage == 3:
|
| 177 |
-
# if there is more than one param group, there will be multiple flattened tensors - one
|
| 178 |
-
# flattened tensor per group - for simplicity merge them into a single tensor
|
| 179 |
-
#
|
| 180 |
-
# XXX: could make the script more memory efficient for when there are multiple groups - it
|
| 181 |
-
# will require matching the sub-lists of param_shapes for each param group flattened tensor
|
| 182 |
-
|
| 183 |
-
fp32_flat_groups = [
|
| 184 |
-
torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
|
| 185 |
-
]
|
| 186 |
-
|
| 187 |
-
return zero_stage, world_size, fp32_flat_groups
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
|
| 191 |
-
"""
|
| 192 |
-
Returns fp32 state_dict reconstructed from ds checkpoint
|
| 193 |
-
|
| 194 |
-
Args:
|
| 195 |
-
- ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
|
| 196 |
-
|
| 197 |
-
"""
|
| 198 |
-
print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
|
| 199 |
-
|
| 200 |
-
optim_files = get_optim_files(ds_checkpoint_dir)
|
| 201 |
-
zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
|
| 202 |
-
print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
|
| 203 |
-
|
| 204 |
-
model_files = get_model_state_files(ds_checkpoint_dir)
|
| 205 |
-
|
| 206 |
-
zero_model_states = parse_model_states(model_files)
|
| 207 |
-
print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
|
| 208 |
-
|
| 209 |
-
if zero_stage == 2:
|
| 210 |
-
return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 211 |
-
elif zero_stage == 3:
|
| 212 |
-
return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states)
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
def _zero2_merge_frozen_params(state_dict, zero_model_states):
|
| 216 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 217 |
-
return
|
| 218 |
-
|
| 219 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 220 |
-
frozen_param_fragments = zero_model_states[0].frozen_param_fragments
|
| 221 |
-
|
| 222 |
-
if debug:
|
| 223 |
-
num_elem = sum(s.numel() for s in frozen_param_shapes.values())
|
| 224 |
-
print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 225 |
-
|
| 226 |
-
wanted_params = len(frozen_param_shapes)
|
| 227 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 228 |
-
avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
|
| 229 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 230 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 231 |
-
|
| 232 |
-
total_params = 0
|
| 233 |
-
total_numel = 0
|
| 234 |
-
for name, shape in frozen_param_shapes.items():
|
| 235 |
-
total_params += 1
|
| 236 |
-
unpartitioned_numel = shape.numel()
|
| 237 |
-
total_numel += unpartitioned_numel
|
| 238 |
-
|
| 239 |
-
state_dict[name] = frozen_param_fragments[name]
|
| 240 |
-
|
| 241 |
-
if debug:
|
| 242 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 243 |
-
|
| 244 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 248 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 249 |
-
|
| 250 |
-
# Reconstruction protocol:
|
| 251 |
-
#
|
| 252 |
-
# XXX: document this
|
| 253 |
-
|
| 254 |
-
if debug:
|
| 255 |
-
for i in range(world_size):
|
| 256 |
-
for j in range(len(fp32_flat_groups[0])):
|
| 257 |
-
print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
|
| 258 |
-
|
| 259 |
-
# XXX: memory usage doubles here (zero2)
|
| 260 |
-
num_param_groups = len(fp32_flat_groups[0])
|
| 261 |
-
merged_single_partition_of_fp32_groups = []
|
| 262 |
-
for i in range(num_param_groups):
|
| 263 |
-
merged_partitions = [sd[i] for sd in fp32_flat_groups]
|
| 264 |
-
full_single_fp32_vector = torch.cat(merged_partitions, 0)
|
| 265 |
-
merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
|
| 266 |
-
avail_numel = sum(
|
| 267 |
-
[full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
|
| 268 |
-
|
| 269 |
-
if debug:
|
| 270 |
-
wanted_params = sum([len(shapes) for shapes in param_shapes])
|
| 271 |
-
wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
|
| 272 |
-
# not asserting if there is a mismatch due to possible padding
|
| 273 |
-
print(f"Have {avail_numel} numels to process.")
|
| 274 |
-
print(f"Need {wanted_numel} numels in {wanted_params} params.")
|
| 275 |
-
|
| 276 |
-
# params
|
| 277 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 278 |
-
# out-of-core computing solution
|
| 279 |
-
total_numel = 0
|
| 280 |
-
total_params = 0
|
| 281 |
-
for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
|
| 282 |
-
offset = 0
|
| 283 |
-
avail_numel = full_single_fp32_vector.numel()
|
| 284 |
-
for name, shape in shapes.items():
|
| 285 |
-
|
| 286 |
-
unpartitioned_numel = shape.numel()
|
| 287 |
-
total_numel += unpartitioned_numel
|
| 288 |
-
total_params += 1
|
| 289 |
-
|
| 290 |
-
if debug:
|
| 291 |
-
print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
|
| 292 |
-
state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
|
| 293 |
-
offset += unpartitioned_numel
|
| 294 |
-
|
| 295 |
-
# Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
|
| 296 |
-
# avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
|
| 297 |
-
# paddings performed in the code it's almost impossible to predict the exact numbers w/o the
|
| 298 |
-
# live optimizer object, so we are checking that the numbers are within the right range
|
| 299 |
-
align_to = 2 * world_size
|
| 300 |
-
|
| 301 |
-
def zero2_align(x):
|
| 302 |
-
return align_to * math.ceil(x / align_to)
|
| 303 |
-
|
| 304 |
-
if debug:
|
| 305 |
-
print(f"original offset={offset}, avail_numel={avail_numel}")
|
| 306 |
-
|
| 307 |
-
offset = zero2_align(offset)
|
| 308 |
-
avail_numel = zero2_align(avail_numel)
|
| 309 |
-
|
| 310 |
-
if debug:
|
| 311 |
-
print(f"aligned offset={offset}, avail_numel={avail_numel}")
|
| 312 |
-
|
| 313 |
-
# Sanity check
|
| 314 |
-
if offset != avail_numel:
|
| 315 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 316 |
-
|
| 317 |
-
print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 321 |
-
state_dict = OrderedDict()
|
| 322 |
-
|
| 323 |
-
# buffers
|
| 324 |
-
buffers = zero_model_states[0].buffers
|
| 325 |
-
state_dict.update(buffers)
|
| 326 |
-
if debug:
|
| 327 |
-
print(f"added {len(buffers)} buffers")
|
| 328 |
-
|
| 329 |
-
_zero2_merge_frozen_params(state_dict, zero_model_states)
|
| 330 |
-
|
| 331 |
-
_zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 332 |
-
|
| 333 |
-
# recover shared parameters
|
| 334 |
-
for pair in zero_model_states[0].shared_params:
|
| 335 |
-
if pair[1] in state_dict:
|
| 336 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 337 |
-
|
| 338 |
-
return state_dict
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
def zero3_partitioned_param_info(unpartitioned_numel, world_size):
|
| 342 |
-
remainder = unpartitioned_numel % world_size
|
| 343 |
-
padding_numel = (world_size - remainder) if remainder else 0
|
| 344 |
-
partitioned_numel = math.ceil(unpartitioned_numel / world_size)
|
| 345 |
-
return partitioned_numel, padding_numel
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
|
| 349 |
-
if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
|
| 350 |
-
return
|
| 351 |
-
|
| 352 |
-
if debug:
|
| 353 |
-
for i in range(world_size):
|
| 354 |
-
num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
|
| 355 |
-
print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
|
| 356 |
-
|
| 357 |
-
frozen_param_shapes = zero_model_states[0].frozen_param_shapes
|
| 358 |
-
wanted_params = len(frozen_param_shapes)
|
| 359 |
-
wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
|
| 360 |
-
avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
|
| 361 |
-
print(f'Frozen params: Have {avail_numel} numels to process.')
|
| 362 |
-
print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
|
| 363 |
-
|
| 364 |
-
total_params = 0
|
| 365 |
-
total_numel = 0
|
| 366 |
-
for name, shape in zero_model_states[0].frozen_param_shapes.items():
|
| 367 |
-
total_params += 1
|
| 368 |
-
unpartitioned_numel = shape.numel()
|
| 369 |
-
total_numel += unpartitioned_numel
|
| 370 |
-
|
| 371 |
-
param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
|
| 372 |
-
state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 373 |
-
|
| 374 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 375 |
-
|
| 376 |
-
if debug:
|
| 377 |
-
print(
|
| 378 |
-
f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 379 |
-
)
|
| 380 |
-
|
| 381 |
-
print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
|
| 385 |
-
param_shapes = zero_model_states[0].param_shapes
|
| 386 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 387 |
-
# Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
|
| 388 |
-
# param, re-consolidating each param, while dealing with padding if any
|
| 389 |
-
|
| 390 |
-
# merge list of dicts, preserving order
|
| 391 |
-
param_shapes = {k: v for d in param_shapes for k, v in d.items()}
|
| 392 |
-
|
| 393 |
-
if debug:
|
| 394 |
-
for i in range(world_size):
|
| 395 |
-
print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
|
| 396 |
-
|
| 397 |
-
wanted_params = len(param_shapes)
|
| 398 |
-
wanted_numel = sum(shape.numel() for shape in param_shapes.values())
|
| 399 |
-
# not asserting if there is a mismatch due to possible padding
|
| 400 |
-
avail_numel = fp32_flat_groups[0].numel() * world_size
|
| 401 |
-
print(f"Trainable params: Have {avail_numel} numels to process.")
|
| 402 |
-
print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
|
| 403 |
-
|
| 404 |
-
# params
|
| 405 |
-
# XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
|
| 406 |
-
# out-of-core computing solution
|
| 407 |
-
offset = 0
|
| 408 |
-
total_numel = 0
|
| 409 |
-
total_params = 0
|
| 410 |
-
for name, shape in param_shapes.items():
|
| 411 |
-
|
| 412 |
-
unpartitioned_numel = shape.numel()
|
| 413 |
-
total_numel += unpartitioned_numel
|
| 414 |
-
total_params += 1
|
| 415 |
-
|
| 416 |
-
partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
|
| 417 |
-
|
| 418 |
-
if debug:
|
| 419 |
-
print(
|
| 420 |
-
f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
|
| 421 |
-
)
|
| 422 |
-
|
| 423 |
-
# XXX: memory usage doubles here
|
| 424 |
-
state_dict[name] = torch.cat(
|
| 425 |
-
tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
|
| 426 |
-
0).narrow(0, 0, unpartitioned_numel).view(shape)
|
| 427 |
-
offset += partitioned_numel
|
| 428 |
-
|
| 429 |
-
offset *= world_size
|
| 430 |
-
|
| 431 |
-
# Sanity check
|
| 432 |
-
if offset != avail_numel:
|
| 433 |
-
raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
|
| 434 |
-
|
| 435 |
-
print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
|
| 436 |
-
|
| 437 |
-
|
| 438 |
-
def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states):
|
| 439 |
-
state_dict = OrderedDict()
|
| 440 |
-
|
| 441 |
-
# buffers
|
| 442 |
-
buffers = zero_model_states[0].buffers
|
| 443 |
-
state_dict.update(buffers)
|
| 444 |
-
if debug:
|
| 445 |
-
print(f"added {len(buffers)} buffers")
|
| 446 |
-
|
| 447 |
-
_zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
|
| 448 |
-
|
| 449 |
-
_zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
|
| 450 |
-
|
| 451 |
-
# recover shared parameters
|
| 452 |
-
for pair in zero_model_states[0].shared_params:
|
| 453 |
-
if pair[1] in state_dict:
|
| 454 |
-
state_dict[pair[0]] = state_dict[pair[1]]
|
| 455 |
-
|
| 456 |
-
return state_dict
|
| 457 |
-
|
| 458 |
-
|
| 459 |
-
def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
|
| 460 |
-
"""
|
| 461 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
|
| 462 |
-
``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
|
| 463 |
-
via a model hub.
|
| 464 |
-
|
| 465 |
-
Args:
|
| 466 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder
|
| 467 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
|
| 468 |
-
|
| 469 |
-
Returns:
|
| 470 |
-
- pytorch ``state_dict``
|
| 471 |
-
|
| 472 |
-
Note: this approach may not work if your application doesn't have sufficient free CPU memory and
|
| 473 |
-
you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
|
| 474 |
-
the checkpoint.
|
| 475 |
-
|
| 476 |
-
A typical usage might be ::
|
| 477 |
-
|
| 478 |
-
from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
|
| 479 |
-
# do the training and checkpoint saving
|
| 480 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
|
| 481 |
-
model = model.cpu() # move to cpu
|
| 482 |
-
model.load_state_dict(state_dict)
|
| 483 |
-
# submit to model hub or save the model to share with others
|
| 484 |
-
|
| 485 |
-
In this example the ``model`` will no longer be usable in the deepspeed context of the same
|
| 486 |
-
application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 487 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 488 |
-
|
| 489 |
-
If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
|
| 490 |
-
|
| 491 |
-
"""
|
| 492 |
-
if tag is None:
|
| 493 |
-
latest_path = os.path.join(checkpoint_dir, 'latest')
|
| 494 |
-
if os.path.isfile(latest_path):
|
| 495 |
-
with open(latest_path, 'r') as fd:
|
| 496 |
-
tag = fd.read().strip()
|
| 497 |
-
else:
|
| 498 |
-
raise ValueError(f"Unable to find 'latest' file at {latest_path}")
|
| 499 |
-
|
| 500 |
-
ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
|
| 501 |
-
|
| 502 |
-
if not os.path.isdir(ds_checkpoint_dir):
|
| 503 |
-
raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
|
| 504 |
-
|
| 505 |
-
return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
|
| 509 |
-
"""
|
| 510 |
-
Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
|
| 511 |
-
loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
|
| 512 |
-
|
| 513 |
-
Args:
|
| 514 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 515 |
-
- ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
|
| 516 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 517 |
-
"""
|
| 518 |
-
|
| 519 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 520 |
-
print(f"Saving fp32 state dict to {output_file}")
|
| 521 |
-
torch.save(state_dict, output_file)
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
|
| 525 |
-
"""
|
| 526 |
-
1. Put the provided model to cpu
|
| 527 |
-
2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
|
| 528 |
-
3. Load it into the provided model
|
| 529 |
-
|
| 530 |
-
Args:
|
| 531 |
-
- ``model``: the model object to update
|
| 532 |
-
- ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
|
| 533 |
-
- ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
|
| 534 |
-
|
| 535 |
-
Returns:
|
| 536 |
-
- ``model`: modified model
|
| 537 |
-
|
| 538 |
-
Make sure you have plenty of CPU memory available before you call this function. If you don't
|
| 539 |
-
have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
|
| 540 |
-
conveniently placed for you in the checkpoint folder.
|
| 541 |
-
|
| 542 |
-
A typical usage might be ::
|
| 543 |
-
|
| 544 |
-
from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
|
| 545 |
-
model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
|
| 546 |
-
# submit to model hub or save the model to share with others
|
| 547 |
-
|
| 548 |
-
Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
|
| 549 |
-
of the same application. i.e. you will need to re-initialize the deepspeed engine, since
|
| 550 |
-
``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
|
| 551 |
-
|
| 552 |
-
"""
|
| 553 |
-
logger.info(f"Extracting fp32 weights")
|
| 554 |
-
state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
|
| 555 |
-
|
| 556 |
-
logger.info(f"Overwriting model with fp32 weights")
|
| 557 |
-
model = model.cpu()
|
| 558 |
-
model.load_state_dict(state_dict, strict=False)
|
| 559 |
-
|
| 560 |
-
return model
|
| 561 |
-
|
| 562 |
-
|
| 563 |
-
if __name__ == "__main__":
|
| 564 |
-
|
| 565 |
-
parser = argparse.ArgumentParser()
|
| 566 |
-
parser.add_argument("checkpoint_dir",
|
| 567 |
-
type=str,
|
| 568 |
-
help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
|
| 569 |
-
parser.add_argument(
|
| 570 |
-
"output_file",
|
| 571 |
-
type=str,
|
| 572 |
-
help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
|
| 573 |
-
parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
|
| 574 |
-
args = parser.parse_args()
|
| 575 |
-
|
| 576 |
-
debug = args.debug
|
| 577 |
-
|
| 578 |
-
convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|