1st commit
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-model1.zip +3 -0
- ppo-LunarLander-model1/_stable_baselines3_version +1 -0
- ppo-LunarLander-model1/data +94 -0
- ppo-LunarLander-model1/policy.optimizer.pth +3 -0
- ppo-LunarLander-model1/policy.pth +3 -0
- ppo-LunarLander-model1/pytorch_variables.pth +3 -0
- ppo-LunarLander-model1/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 275.72 +/- 20.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f241ef99160>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f241ef991f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f241ef99280>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f241ef99310>", "_build": "<function ActorCriticPolicy._build at 0x7f241ef993a0>", "forward": "<function ActorCriticPolicy.forward at 0x7f241ef99430>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f241ef994c0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f241ef99550>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f241ef995e0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f241ef99670>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f241ef99700>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f241ef954b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670614229359467738, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBxxr2PnAM9k2gePuF7H74WB6E889BlPAAAAAAAAAAA5k56Pa7L1bp6SZc6RnScPOa+CTxmHYe9AACAPwAAgD8mId89FIylup67Uru8Zty16E9LuqIzcjoAAAAAAACAP7rvZj4Uru+8+pTMPMMiRrupW1a+Zl8WvAAAgD8AAIA/mtICvgqJPLv65I04pVW/NWPsQDzwvK23AACAPwAAgD/teQS+2kdGP2OCsL3XBdy+tR7xvWdEvTwAAAAAAAAAAKYePD6QkaA/StAXP5K+Br/7Qls+mr+mPgAAAAAAAAAAjRq5Pd4YkT5LMmO+0Plzvj0KvLxzpge8AAAAAAAAAACa2UA86gaXPzrsDD2QVSO/sYq2O+wygT0AAAAAAAAAAJoJv7r2VCG6XYXfuutVjLZM4yo6mAACOgAAgD8AAIA/GiqJPieGQr014N8559IzuHlFqr4i6kW5AACAPwAAgD86VRu+ARW9PUpoKj65CSe+jMWCvG/HGD4AAAAAAAAAAKbNiD3hUb47ipjhvQcbPr5nasG9RseJPgAAgD8AAAAApk2BPhElrD/n0SQ/WUMCv1mVRD7m9bY+AAAAAAAAAAAzz14+uCwEP6Id27zGSte+pH4MPub6970AAAAAAAAAAE2RCb179OG4Zd0osk17aa6bQGe7VvcDMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN4qsNZQ1ckCUhpRSlIwBbJRNxAKMAXSUR0CT3Mguh9LIdX2UKGgGaAloD0MINxlVhnGbYUCUhpRSlGgVTegDaBZHQJPelp7CzkZ1fZQoaAZoCWgPQwgbgXhdP55sQJSGlFKUaBVNgQNoFkdAk/U/Kp1ifHV9lChoBmgJaA9DCG4xPzc0XWlAlIaUUpRoFU3oA2gWR0CT+oLZzxPPdX2UKGgGaAloD0MI2IFzRpT7YkCUhpRSlGgVTegDaBZHQJP6kUxmCiB1fZQoaAZoCWgPQwimC7H6YytzQJSGlFKUaBVNjgFoFkdAk/wXaBZpz3V9lChoBmgJaA9DCAJHAg22yWJAlIaUUpRoFU3oA2gWR0CT/TExqO94dX2UKGgGaAloD0MIN4lBYCUsckCUhpRSlGgVTeIBaBZHQJP9Y5imVJN1fZQoaAZoCWgPQwhSKuEJfTRxQJSGlFKUaBVNaQFoFkdAk/9qhg3Lm3V9lChoBmgJaA9DCDbOpiOANG5AlIaUUpRoFU13AmgWR0CUAjN0NjLCdX2UKGgGaAloD0MIpoC0/wGYZUCUhpRSlGgVTegDaBZHQJQJ6EpRXOp1fZQoaAZoCWgPQwgQecvVj+thQJSGlFKUaBVN6ANoFkdAlAvqRyOrAHV9lChoBmgJaA9DCNTTR+APV2JAlIaUUpRoFU3oA2gWR0CUDHiEQGwBdX2UKGgGaAloD0MItMu3PizeY0CUhpRSlGgVTegDaBZHQJQNZCswL3N1fZQoaAZoCWgPQwgaFw6E5L9lQJSGlFKUaBVN6ANoFkdAlA+1MM7U5XV9lChoBmgJaA9DCDGZKhgVzm9AlIaUUpRoFU05AWgWR0CUEEJbMX7+dX2UKGgGaAloD0MINGYS9YL4Y0CUhpRSlGgVTegDaBZHQJQUWrELpiZ1fZQoaAZoCWgPQwjZzCGpBW1nQJSGlFKUaBVN6ANoFkdAlBg2FajesXV9lChoBmgJaA9DCFlqvd/oV2dAlIaUUpRoFU3oA2gWR0CUGRUZNwirdX2UKGgGaAloD0MIO/vKgzQjcECUhpRSlGgVTUIBaBZHQJQbdGvwEyN1fZQoaAZoCWgPQwiqKjQQC/lxQJSGlFKUaBVNDgNoFkdAlBwSlnAZbnV9lChoBmgJaA9DCF38bU8Q8WRAlIaUUpRoFU3oA2gWR0CUMpHk92X+dX2UKGgGaAloD0MIaTaPw2A7ckCUhpRSlGgVTTgDaBZHQJQzV/Ue+251fZQoaAZoCWgPQwhSZK2hVHtwQJSGlFKUaBVNQQFoFkdAlDUpTuOS4nV9lChoBmgJaA9DCHIXYYpyvXFAlIaUUpRoFU0eAWgWR0CUN2FMIu5CdX2UKGgGaAloD0MIOfBquTPfYUCUhpRSlGgVTegDaBZHQJQ3/bO/tY11fZQoaAZoCWgPQwg6XRYTW7dwQJSGlFKUaBVNhgNoFkdAlDkjLwF1S3V9lChoBmgJaA9DCClauReYeGdAlIaUUpRoFU3oA2gWR0CUOYPFefI0dX2UKGgGaAloD0MIPrSPFTx6ckCUhpRSlGgVTRUBaBZHQJQ6TYywfQt1fZQoaAZoCWgPQwi+2ebG9NpnQJSGlFKUaBVN6ANoFkdAlDp4f8uSOnV9lChoBmgJaA9DCEYIjzYOxG1AlIaUUpRoFU21AmgWR0CUO++8Gs3idX2UKGgGaAloD0MIUmNCzGV6ckCUhpRSlGgVTakCaBZHQJQ78Aq/dqN1fZQoaAZoCWgPQwgcP1Qa8S5xQJSGlFKUaBVNAQFoFkdAlDzjdtVJc3V9lChoBmgJaA9DCJZCIJf4OXBAlIaUUpRoFU2fAWgWR0CUPodJ8OTadX2UKGgGaAloD0MIRUqzeRycRUCUhpRSlGgVS6NoFkdAlD/0nb7CSHV9lChoBmgJaA9DCGDmO/iJ8HBAlIaUUpRoFU1gAmgWR0CURBeBg/kedX2UKGgGaAloD0MI3pIcsKvJcUCUhpRSlGgVTc8BaBZHQJRFaCuloDh1fZQoaAZoCWgPQwjVJHhDGo5kQJSGlFKUaBVN6ANoFkdAlEYM/t6X0HV9lChoBmgJaA9DCOjAcoRMy3BAlIaUUpRoFU28AWgWR0CUSOe5nUUgdX2UKGgGaAloD0MI6bZELviac0CUhpRSlGgVTaYBaBZHQJRKmdYnv2J1fZQoaAZoCWgPQwhMwRpn0+FgQJSGlFKUaBVN6ANoFkdAlEszJhfBvnV9lChoBmgJaA9DCBjrG5hcpHJAlIaUUpRoFU3cAWgWR0CUS0QAMlTndX2UKGgGaAloD0MINWH7yRjNaUCUhpRSlGgVTegDaBZHQJRLpYzSCvp1fZQoaAZoCWgPQwjKxK2CmEdwQJSGlFKUaBVNJwFoFkdAlEvANsnAqXV9lChoBmgJaA9DCC1agLZVdnJAlIaUUpRoFU0AAmgWR0CUTLpkf9xZdX2UKGgGaAloD0MI323eOCm7cECUhpRSlGgVS/toFkdAlE8UtqYZ23V9lChoBmgJaA9DCLEWnwLgH3FAlIaUUpRoFU2EAWgWR0CUUi1uR9w4dX2UKGgGaAloD0MIkgciizS3SkCUhpRSlGgVS7doFkdAlFLXAAQxvnV9lChoBmgJaA9DCGlSCrr9bnJAlIaUUpRoFU0wAWgWR0CUVYcH4XXRdX2UKGgGaAloD0MI1uO+1XqCcUCUhpRSlGgVTScBaBZHQJRVnvjOs1d1fZQoaAZoCWgPQwgLl1XYTJVxQJSGlFKUaBVNSgFoFkdAlFXazu4PPXV9lChoBmgJaA9DCCjxuRPsQ3JAlIaUUpRoFU2UAWgWR0CUVuN2TxG2dX2UKGgGaAloD0MIe4fboeHcbkCUhpRSlGgVTRgDaBZHQJRq41Nxlxx1fZQoaAZoCWgPQwie0VYlEZ1vQJSGlFKUaBVNIwFoFkdAlGtnNke6qnV9lChoBmgJaA9DCO54k98is2BAlIaUUpRoFU3oA2gWR0CUbAevIOpbdX2UKGgGaAloD0MI1PGYgUoybUCUhpRSlGgVTUMCaBZHQJRsFdJJ5FB1fZQoaAZoCWgPQwiCAu/kU2BzQJSGlFKUaBVNLQNoFkdAlGx0ytV7yHV9lChoBmgJaA9DCMZOeAlOo3FAlIaUUpRoFU0GAWgWR0CUbS0tAcDKdX2UKGgGaAloD0MI5SX/k7+taECUhpRSlGgVTegDaBZHQJRtbLxI8Qt1fZQoaAZoCWgPQwho6+Bgb41yQJSGlFKUaBVN2QFoFkdAlG2ScCo0h3V9lChoBmgJaA9DCAw89x6ub3BAlIaUUpRoFU35AWgWR0CUbfCmMwUQdX2UKGgGaAloD0MIDHOCNjlkcUCUhpRSlGgVTXEDaBZHQJRvXueBg/l1fZQoaAZoCWgPQwgH7kCdci9xQJSGlFKUaBVNDQFoFkdAlG+qvq1PWXV9lChoBmgJaA9DCCtpxTeUiWRAlIaUUpRoFU3oA2gWR0CUcIMglnh9dX2UKGgGaAloD0MIc/T4vU2PM0CUhpRSlGgVS7ZoFkdAlHDKCcwxnHV9lChoBmgJaA9DCAWlaOVeREpAlIaUUpRoFUvMaBZHQJRw0yckMTh1fZQoaAZoCWgPQwjEXFK13XpGQJSGlFKUaBVLpWgWR0CUcdo8p1A8dX2UKGgGaAloD0MIGqIKfwY+bUCUhpRSlGgVTQwBaBZHQJRyLHJcPe51fZQoaAZoCWgPQwiTxJJyd+dxQJSGlFKUaBVNHAFoFkdAlHOZRsMy8HV9lChoBmgJaA9DCMri/iNT+3BAlIaUUpRoFU3zAWgWR0CUc/x5LRKIdX2UKGgGaAloD0MI+rfLfh1gc0CUhpRSlGgVTTQBaBZHQJR0tLnLaEl1fZQoaAZoCWgPQwiL+49MB2ZyQJSGlFKUaBVNyAFoFkdAlHYbd8Aq/nV9lChoBmgJaA9DCM5xbhPuS0FAlIaUUpRoFUvNaBZHQJR2YyFfzBh1fZQoaAZoCWgPQwiLijidJExyQJSGlFKUaBVNVQFoFkdAlHd9sSCe3HV9lChoBmgJaA9DCOPhPQeWG29AlIaUUpRoFU0UAWgWR0CUd6QyRB/rdX2UKGgGaAloD0MIKes3ExMrckCUhpRSlGgVS/ZoFkdAlHf93np0OnV9lChoBmgJaA9DCMoYH2YvYHBAlIaUUpRoFU1TAWgWR0CUeTPO6d1/dX2UKGgGaAloD0MITn0geSehcECUhpRSlGgVTaoBaBZHQJR5a8xsVL11fZQoaAZoCWgPQwgkKlQ31/pyQJSGlFKUaBVNbAJoFkdAlHotKujh1nV9lChoBmgJaA9DCEW5NH5hV3FAlIaUUpRoFU3PAWgWR0CUeju/1xsEdX2UKGgGaAloD0MI4Sh5dQ4Fb0CUhpRSlGgVTRcBaBZHQJR6dASnLq51fZQoaAZoCWgPQwjtKTkn9oRyQJSGlFKUaBVNqAJoFkdAlHupNoJzDHV9lChoBmgJaA9DCJp9HqM8THJAlIaUUpRoFU1SAWgWR0CUe8hzvJA/dX2UKGgGaAloD0MIWP58W7D+R0CUhpRSlGgVS6doFkdAlHxcIu5BknV9lChoBmgJaA9DCJ5EhH8RCW1AlIaUUpRoFU1DAWgWR0CUfl1EVnEmdX2UKGgGaAloD0MI/OO9amW+cUCUhpRSlGgVTRoBaBZHQJR+jRBu4w11fZQoaAZoCWgPQwjU824saDFxQJSGlFKUaBVNMwFoFkdAlH+v2PDHfnV9lChoBmgJaA9DCJMANbVsqW1AlIaUUpRoFU0eAWgWR0CUgLo3aSLZdX2UKGgGaAloD0MI8OAnDmCbcECUhpRSlGgVTS0BaBZHQJSA1GH58Bx1fZQoaAZoCWgPQwjQnPUpx3ZSQJSGlFKUaBVLx2gWR0CUgiJW/8EWdX2UKGgGaAloD0MIzLc+rPdFcECUhpRSlGgVS+ZoFkdAlIMTiS7oS3V9lChoBmgJaA9DCFd5AmGn4W9AlIaUUpRoFU0/AWgWR0CUhFJXQtz0dX2UKGgGaAloD0MICp5CrtStQUCUhpRSlGgVS69oFkdAlIR+jqOcUnV9lChoBmgJaA9DCMbgYdr3t3BAlIaUUpRoFU0tAmgWR0CUhPqOcUdrdX2UKGgGaAloD0MI+OC1SxspckCUhpRSlGgVTZABaBZHQJSF9UbT+eh1fZQoaAZoCWgPQwgRx7q4zQNzQJSGlFKUaBVNfAFoFkdAlIZk/B3zMHV9lChoBmgJaA9DCDnulA7WoVVAlIaUUpRoFUuYaBZHQJSH8psoDxN1fZQoaAZoCWgPQwiyRj1EI9JvQJSGlFKUaBVNjwJoFkdAlIho5tFa0XV9lChoBmgJaA9DCMug2uAEf3JAlIaUUpRoFUvzaBZHQJSIoKiO/+N1fZQoaAZoCWgPQwiVtyOcVp5wQJSGlFKUaBVL92gWR0CUiNU2DQJHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-model1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ccf4c543aa0cfa36cfbd50947c45020aa6cf51b09dc952cc596207957a2292ef
|
3 |
+
size 147198
|
ppo-LunarLander-model1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-model1/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f241ef99160>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f241ef991f0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f241ef99280>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f241ef99310>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f241ef993a0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f241ef99430>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f241ef994c0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f241ef99550>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f241ef995e0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f241ef99670>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f241ef99700>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f241ef954b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1670614229359467738,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEBxxr2PnAM9k2gePuF7H74WB6E889BlPAAAAAAAAAAA5k56Pa7L1bp6SZc6RnScPOa+CTxmHYe9AACAPwAAgD8mId89FIylup67Uru8Zty16E9LuqIzcjoAAAAAAACAP7rvZj4Uru+8+pTMPMMiRrupW1a+Zl8WvAAAgD8AAIA/mtICvgqJPLv65I04pVW/NWPsQDzwvK23AACAPwAAgD/teQS+2kdGP2OCsL3XBdy+tR7xvWdEvTwAAAAAAAAAAKYePD6QkaA/StAXP5K+Br/7Qls+mr+mPgAAAAAAAAAAjRq5Pd4YkT5LMmO+0Plzvj0KvLxzpge8AAAAAAAAAACa2UA86gaXPzrsDD2QVSO/sYq2O+wygT0AAAAAAAAAAJoJv7r2VCG6XYXfuutVjLZM4yo6mAACOgAAgD8AAIA/GiqJPieGQr014N8559IzuHlFqr4i6kW5AACAPwAAgD86VRu+ARW9PUpoKj65CSe+jMWCvG/HGD4AAAAAAAAAAKbNiD3hUb47ipjhvQcbPr5nasG9RseJPgAAgD8AAAAApk2BPhElrD/n0SQ/WUMCv1mVRD7m9bY+AAAAAAAAAAAzz14+uCwEP6Id27zGSte+pH4MPub6970AAAAAAAAAAE2RCb179OG4Zd0osk17aa6bQGe7VvcDMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVchAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIN4qsNZQ1ckCUhpRSlIwBbJRNxAKMAXSUR0CT3Mguh9LIdX2UKGgGaAloD0MINxlVhnGbYUCUhpRSlGgVTegDaBZHQJPelp7CzkZ1fZQoaAZoCWgPQwgbgXhdP55sQJSGlFKUaBVNgQNoFkdAk/U/Kp1ifHV9lChoBmgJaA9DCG4xPzc0XWlAlIaUUpRoFU3oA2gWR0CT+oLZzxPPdX2UKGgGaAloD0MI2IFzRpT7YkCUhpRSlGgVTegDaBZHQJP6kUxmCiB1fZQoaAZoCWgPQwimC7H6YytzQJSGlFKUaBVNjgFoFkdAk/wXaBZpz3V9lChoBmgJaA9DCAJHAg22yWJAlIaUUpRoFU3oA2gWR0CT/TExqO94dX2UKGgGaAloD0MIN4lBYCUsckCUhpRSlGgVTeIBaBZHQJP9Y5imVJN1fZQoaAZoCWgPQwhSKuEJfTRxQJSGlFKUaBVNaQFoFkdAk/9qhg3Lm3V9lChoBmgJaA9DCDbOpiOANG5AlIaUUpRoFU13AmgWR0CUAjN0NjLCdX2UKGgGaAloD0MIpoC0/wGYZUCUhpRSlGgVTegDaBZHQJQJ6EpRXOp1fZQoaAZoCWgPQwgQecvVj+thQJSGlFKUaBVN6ANoFkdAlAvqRyOrAHV9lChoBmgJaA9DCNTTR+APV2JAlIaUUpRoFU3oA2gWR0CUDHiEQGwBdX2UKGgGaAloD0MItMu3PizeY0CUhpRSlGgVTegDaBZHQJQNZCswL3N1fZQoaAZoCWgPQwgaFw6E5L9lQJSGlFKUaBVN6ANoFkdAlA+1MM7U5XV9lChoBmgJaA9DCDGZKhgVzm9AlIaUUpRoFU05AWgWR0CUEEJbMX7+dX2UKGgGaAloD0MINGYS9YL4Y0CUhpRSlGgVTegDaBZHQJQUWrELpiZ1fZQoaAZoCWgPQwjZzCGpBW1nQJSGlFKUaBVN6ANoFkdAlBg2FajesXV9lChoBmgJaA9DCFlqvd/oV2dAlIaUUpRoFU3oA2gWR0CUGRUZNwirdX2UKGgGaAloD0MIO/vKgzQjcECUhpRSlGgVTUIBaBZHQJQbdGvwEyN1fZQoaAZoCWgPQwiqKjQQC/lxQJSGlFKUaBVNDgNoFkdAlBwSlnAZbnV9lChoBmgJaA9DCF38bU8Q8WRAlIaUUpRoFU3oA2gWR0CUMpHk92X+dX2UKGgGaAloD0MIaTaPw2A7ckCUhpRSlGgVTTgDaBZHQJQzV/Ue+251fZQoaAZoCWgPQwhSZK2hVHtwQJSGlFKUaBVNQQFoFkdAlDUpTuOS4nV9lChoBmgJaA9DCHIXYYpyvXFAlIaUUpRoFU0eAWgWR0CUN2FMIu5CdX2UKGgGaAloD0MIOfBquTPfYUCUhpRSlGgVTegDaBZHQJQ3/bO/tY11fZQoaAZoCWgPQwg6XRYTW7dwQJSGlFKUaBVNhgNoFkdAlDkjLwF1S3V9lChoBmgJaA9DCClauReYeGdAlIaUUpRoFU3oA2gWR0CUOYPFefI0dX2UKGgGaAloD0MIPrSPFTx6ckCUhpRSlGgVTRUBaBZHQJQ6TYywfQt1fZQoaAZoCWgPQwi+2ebG9NpnQJSGlFKUaBVN6ANoFkdAlDp4f8uSOnV9lChoBmgJaA9DCEYIjzYOxG1AlIaUUpRoFU21AmgWR0CUO++8Gs3idX2UKGgGaAloD0MIUmNCzGV6ckCUhpRSlGgVTakCaBZHQJQ78Aq/dqN1fZQoaAZoCWgPQwgcP1Qa8S5xQJSGlFKUaBVNAQFoFkdAlDzjdtVJc3V9lChoBmgJaA9DCJZCIJf4OXBAlIaUUpRoFU2fAWgWR0CUPodJ8OTadX2UKGgGaAloD0MIRUqzeRycRUCUhpRSlGgVS6NoFkdAlD/0nb7CSHV9lChoBmgJaA9DCGDmO/iJ8HBAlIaUUpRoFU1gAmgWR0CURBeBg/kedX2UKGgGaAloD0MI3pIcsKvJcUCUhpRSlGgVTc8BaBZHQJRFaCuloDh1fZQoaAZoCWgPQwjVJHhDGo5kQJSGlFKUaBVN6ANoFkdAlEYM/t6X0HV9lChoBmgJaA9DCOjAcoRMy3BAlIaUUpRoFU28AWgWR0CUSOe5nUUgdX2UKGgGaAloD0MI6bZELviac0CUhpRSlGgVTaYBaBZHQJRKmdYnv2J1fZQoaAZoCWgPQwhMwRpn0+FgQJSGlFKUaBVN6ANoFkdAlEszJhfBvnV9lChoBmgJaA9DCBjrG5hcpHJAlIaUUpRoFU3cAWgWR0CUS0QAMlTndX2UKGgGaAloD0MINWH7yRjNaUCUhpRSlGgVTegDaBZHQJRLpYzSCvp1fZQoaAZoCWgPQwjKxK2CmEdwQJSGlFKUaBVNJwFoFkdAlEvANsnAqXV9lChoBmgJaA9DCC1agLZVdnJAlIaUUpRoFU0AAmgWR0CUTLpkf9xZdX2UKGgGaAloD0MI323eOCm7cECUhpRSlGgVS/toFkdAlE8UtqYZ23V9lChoBmgJaA9DCLEWnwLgH3FAlIaUUpRoFU2EAWgWR0CUUi1uR9w4dX2UKGgGaAloD0MIkgciizS3SkCUhpRSlGgVS7doFkdAlFLXAAQxvnV9lChoBmgJaA9DCGlSCrr9bnJAlIaUUpRoFU0wAWgWR0CUVYcH4XXRdX2UKGgGaAloD0MI1uO+1XqCcUCUhpRSlGgVTScBaBZHQJRVnvjOs1d1fZQoaAZoCWgPQwgLl1XYTJVxQJSGlFKUaBVNSgFoFkdAlFXazu4PPXV9lChoBmgJaA9DCCjxuRPsQ3JAlIaUUpRoFU2UAWgWR0CUVuN2TxG2dX2UKGgGaAloD0MIe4fboeHcbkCUhpRSlGgVTRgDaBZHQJRq41Nxlxx1fZQoaAZoCWgPQwie0VYlEZ1vQJSGlFKUaBVNIwFoFkdAlGtnNke6qnV9lChoBmgJaA9DCO54k98is2BAlIaUUpRoFU3oA2gWR0CUbAevIOpbdX2UKGgGaAloD0MI1PGYgUoybUCUhpRSlGgVTUMCaBZHQJRsFdJJ5FB1fZQoaAZoCWgPQwiCAu/kU2BzQJSGlFKUaBVNLQNoFkdAlGx0ytV7yHV9lChoBmgJaA9DCMZOeAlOo3FAlIaUUpRoFU0GAWgWR0CUbS0tAcDKdX2UKGgGaAloD0MI5SX/k7+taECUhpRSlGgVTegDaBZHQJRtbLxI8Qt1fZQoaAZoCWgPQwho6+Bgb41yQJSGlFKUaBVN2QFoFkdAlG2ScCo0h3V9lChoBmgJaA9DCAw89x6ub3BAlIaUUpRoFU35AWgWR0CUbfCmMwUQdX2UKGgGaAloD0MIDHOCNjlkcUCUhpRSlGgVTXEDaBZHQJRvXueBg/l1fZQoaAZoCWgPQwgH7kCdci9xQJSGlFKUaBVNDQFoFkdAlG+qvq1PWXV9lChoBmgJaA9DCCtpxTeUiWRAlIaUUpRoFU3oA2gWR0CUcIMglnh9dX2UKGgGaAloD0MIc/T4vU2PM0CUhpRSlGgVS7ZoFkdAlHDKCcwxnHV9lChoBmgJaA9DCAWlaOVeREpAlIaUUpRoFUvMaBZHQJRw0yckMTh1fZQoaAZoCWgPQwjEXFK13XpGQJSGlFKUaBVLpWgWR0CUcdo8p1A8dX2UKGgGaAloD0MIGqIKfwY+bUCUhpRSlGgVTQwBaBZHQJRyLHJcPe51fZQoaAZoCWgPQwiTxJJyd+dxQJSGlFKUaBVNHAFoFkdAlHOZRsMy8HV9lChoBmgJaA9DCMri/iNT+3BAlIaUUpRoFU3zAWgWR0CUc/x5LRKIdX2UKGgGaAloD0MI+rfLfh1gc0CUhpRSlGgVTTQBaBZHQJR0tLnLaEl1fZQoaAZoCWgPQwiL+49MB2ZyQJSGlFKUaBVNyAFoFkdAlHYbd8Aq/nV9lChoBmgJaA9DCM5xbhPuS0FAlIaUUpRoFUvNaBZHQJR2YyFfzBh1fZQoaAZoCWgPQwiLijidJExyQJSGlFKUaBVNVQFoFkdAlHd9sSCe3HV9lChoBmgJaA9DCOPhPQeWG29AlIaUUpRoFU0UAWgWR0CUd6QyRB/rdX2UKGgGaAloD0MIKes3ExMrckCUhpRSlGgVS/ZoFkdAlHf93np0OnV9lChoBmgJaA9DCMoYH2YvYHBAlIaUUpRoFU1TAWgWR0CUeTPO6d1/dX2UKGgGaAloD0MITn0geSehcECUhpRSlGgVTaoBaBZHQJR5a8xsVL11fZQoaAZoCWgPQwgkKlQ31/pyQJSGlFKUaBVNbAJoFkdAlHotKujh1nV9lChoBmgJaA9DCEW5NH5hV3FAlIaUUpRoFU3PAWgWR0CUeju/1xsEdX2UKGgGaAloD0MI4Sh5dQ4Fb0CUhpRSlGgVTRcBaBZHQJR6dASnLq51fZQoaAZoCWgPQwjtKTkn9oRyQJSGlFKUaBVNqAJoFkdAlHupNoJzDHV9lChoBmgJaA9DCJp9HqM8THJAlIaUUpRoFU1SAWgWR0CUe8hzvJA/dX2UKGgGaAloD0MIWP58W7D+R0CUhpRSlGgVS6doFkdAlHxcIu5BknV9lChoBmgJaA9DCJ5EhH8RCW1AlIaUUpRoFU1DAWgWR0CUfl1EVnEmdX2UKGgGaAloD0MI/OO9amW+cUCUhpRSlGgVTRoBaBZHQJR+jRBu4w11fZQoaAZoCWgPQwjU824saDFxQJSGlFKUaBVNMwFoFkdAlH+v2PDHfnV9lChoBmgJaA9DCJMANbVsqW1AlIaUUpRoFU0eAWgWR0CUgLo3aSLZdX2UKGgGaAloD0MI8OAnDmCbcECUhpRSlGgVTS0BaBZHQJSA1GH58Bx1fZQoaAZoCWgPQwjQnPUpx3ZSQJSGlFKUaBVLx2gWR0CUgiJW/8EWdX2UKGgGaAloD0MIzLc+rPdFcECUhpRSlGgVS+ZoFkdAlIMTiS7oS3V9lChoBmgJaA9DCFd5AmGn4W9AlIaUUpRoFU0/AWgWR0CUhFJXQtz0dX2UKGgGaAloD0MICp5CrtStQUCUhpRSlGgVS69oFkdAlIR+jqOcUnV9lChoBmgJaA9DCMbgYdr3t3BAlIaUUpRoFU0tAmgWR0CUhPqOcUdrdX2UKGgGaAloD0MI+OC1SxspckCUhpRSlGgVTZABaBZHQJSF9UbT+eh1fZQoaAZoCWgPQwgRx7q4zQNzQJSGlFKUaBVNfAFoFkdAlIZk/B3zMHV9lChoBmgJaA9DCDnulA7WoVVAlIaUUpRoFUuYaBZHQJSH8psoDxN1fZQoaAZoCWgPQwiyRj1EI9JvQJSGlFKUaBVNjwJoFkdAlIho5tFa0XV9lChoBmgJaA9DCMug2uAEf3JAlIaUUpRoFUvzaBZHQJSIoKiO/+N1fZQoaAZoCWgPQwiVtyOcVp5wQJSGlFKUaBVL92gWR0CUiNU2DQJHdWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-model1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c454ee7b73cd3d3caec75f0b82c8d04a225f82c6802d139c82ed3f8ed4dbdf74
|
3 |
+
size 87929
|
ppo-LunarLander-model1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5b1f4549cad7bce95b58ebf0727e3cd13c60ab71418b333860fb0b13b8874184
|
3 |
+
size 43201
|
ppo-LunarLander-model1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-model1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (201 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 275.71950874554983, "std_reward": 20.440815892279215, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-09T20:00:08.351310"}
|