File size: 4,941 Bytes
f381879
ccb5e13
a53a094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f381879
 
 
0429951
 
 
6bd26d0
 
 
aa2b1b7
9edc20f
 
1a68e27
aa2b1b7
a8ba114
 
64e4d96
aeddfcc
f381879
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a53a094
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
---
license: gpl-3.0
model-index:
- name: 34b-beta
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 30.43
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 36.68
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 4.15
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 12.86
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.92
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 48.06
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=CausalLM/34b-beta
      name: Open LLM Leaderboard
---
# CausalLM 34B β

Demo: [![](https://huggingface.co/datasets/huggingface/badges/raw/main/open-in-hf-spaces-sm.svg)](https://huggingface.co/spaces/JosephusCheung/CausalLM-34B-8-bit-GGUF)


## PROMPT FORMAT:
[chatml](https://github.com/openai/openai-python/blob/main/chatml.md)

There are some issues with the model weights in terms of precision. In the next version update, we will roll back some progress and retrain to fix these issues as soon as possible.

**Please note:** Do not use "accelerated inference frameworks" like **VLLM** temporarily. Instead, use Transformers for inference. Otherwise, due to precision issues, the output quality will be significantly degraded. If you need faster inference, you can consider using the q8_0 quantization (faster and better than bf16 vllm for this model only) with llama.cpp temporarily or wait for the official version.
To be fixed in the upcoming next version update.

**no repetition_penalty!**

Please do not use wikitext for quantization calibration because all wikitext have been re-aligned on synthetic dataset, and its distribution differs significantly from the original wikitext.

## MT-Bench: 8.5

![mt-bench](https://cdn-uploads.huggingface.co/production/uploads/63468a143ea42ee2cb49ddd1/2vv2_nGbfWuOM8jwy40dn.png)

## Some contamination detection if you want to check:

| Models                    | MMLU (ref: llama7b) | TBA  |
| ------------------------- | ------------------- | ---- |
| microsoft/Orca-2-7b       | 0.77                |      |
| mistralai/Mistral-7B-v0.1 | 0.46                |      |
| **CausalLM/34b-beta**     | **0.38**            |      |
| 01-ai/Yi-6B-200K          | 0.3                 |      |

data from https://huggingface.co/spaces/Yeyito/llm_contamination_detector

It should be *safe*. It was not trained on the benchmark, but the contamination of the training dataset is unavoidable due to cost constraints.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_CausalLM__34b-beta)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |23.18|
|IFEval (0-Shot)    |30.43|
|BBH (3-Shot)       |36.68|
|MATH Lvl 5 (4-Shot)| 4.15|
|GPQA (0-shot)      |12.86|
|MuSR (0-shot)      | 6.92|
|MMLU-PRO (5-shot)  |48.06|