File size: 19,821 Bytes
50e6685
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import os
import pandas as pd
import numpy as np
import argparse
import datasets
import torch
import re
from thefuzz import process
from typing import List
from tqdm import tqdm
from transformers.trainer_utils import set_seed

from typing import Tuple, List, Union, Iterable

import numpy as np
import torch
import torch.nn.functional as F
from transformers import PreTrainedTokenizer
from transformers import logging
from transformers.generation import LogitsProcessor
from typing import TYPE_CHECKING, Optional, Tuple, Union, Callable, List
HistoryType = List[Tuple[str, str]]
TokensType = List[int]
BatchTokensType = List[List[int]]

def make_context(
    tokenizer: PreTrainedTokenizer,
    query: str,
    history: List[Tuple[str, str]] = None,
    system: str = "",
    max_window_size: int = 6144,
    chat_format: str = "chatml",
):
    if history is None:
        history = []

    im_start, im_end = "<|im_start|>", "<|im_end|>"
    im_start_tokens = [tokenizer.im_start_id]
    im_end_tokens = [tokenizer.im_end_id]
    nl_tokens = tokenizer.encode("\n")

    def _tokenize_str(role, content):
        return f"{role}\n{content}", tokenizer.encode(
            role
        ) + nl_tokens + tokenizer.encode(content)

    system_text, system_tokens_part = _tokenize_str("system", system)
    system_tokens = im_start_tokens + system_tokens_part + im_end_tokens

    raw_text = ""
    context_tokens = []

    for turn_query, turn_response in reversed(history):
        query_text, query_tokens_part = _tokenize_str("user", turn_query)
        query_tokens = im_start_tokens + query_tokens_part + im_end_tokens
        response_text, response_tokens_part = _tokenize_str(
            "assistant", turn_response
        )
        response_tokens = im_start_tokens + response_tokens_part + im_end_tokens

        next_context_tokens = nl_tokens + query_tokens + nl_tokens + response_tokens
        prev_chat = (
            f"\n{im_start}{query_text}{im_end}\n{im_start}{response_text}{im_end}"
        )

        current_context_size = (
            len(system_tokens) + len(next_context_tokens) + len(context_tokens)
        )
        if current_context_size < max_window_size:
            context_tokens = next_context_tokens + context_tokens
            raw_text = prev_chat + raw_text
        else:
            break

    context_tokens = system_tokens + context_tokens
    raw_text = f"{im_start}{system_text}{im_end}" + raw_text
    context_tokens += (
        nl_tokens
        + im_start_tokens
        + _tokenize_str("user", query)[1]
        + im_end_tokens
        + nl_tokens
        + im_start_tokens
        + tokenizer.encode("assistant")
        + nl_tokens
    )
    raw_text += f"\n{im_start}user\n{query}{im_end}\n{im_start}assistant\n"

    return raw_text, context_tokens

def chat(
    model,
    tokenizer: PreTrainedTokenizer,
    query: str,
    history: Optional[HistoryType],
    system: str = "You are a helpful assistant.",
    append_history: bool = True
) -> Tuple[str, HistoryType]:


    if history is None:
        history = []

    raw_text, context_tokens = make_context(
        tokenizer,
        query,
        history=history,
        system=system,
        max_window_size=6144,
        chat_format = "chatml",
    )

    stop_words_ids = [[tokenizer.im_end_id], [tokenizer.im_start_id]]
    input_ids = torch.tensor([context_tokens]).cuda()
    outputs = model.generate(
                input_ids,
                # stop_words_ids = stop_words_ids,
                return_dict_in_generate = False,
            )

    response = decode_tokens(
        outputs[0],
        tokenizer,
        raw_text_len=len(raw_text),
        context_length=len(context_tokens),
        chat_format='chatml',
        verbose=False,
    )

    if append_history:
        history.append((query, response))

    return response, history

def decode_tokens(
    tokens: Union[torch.LongTensor, TokensType],
    tokenizer: PreTrainedTokenizer,
    raw_text_len: int,
    context_length: int,
    chat_format: str = "chatml",
    verbose: bool = False,
    return_end_reason: bool = False,
) -> str:
    if torch.is_tensor(tokens):
        tokens = tokens.cpu().numpy().tolist()


    return _decode_chatml(
        tokens,
        stop_words=[],
        eod_token_ids=[tokenizer.im_start_id, tokenizer.im_end_id],
        tokenizer=tokenizer,
        raw_text_len=raw_text_len,
        context_length=context_length,
        verbose=verbose,
        return_end_reason=return_end_reason,
    )


def _decode_chatml(
    tokens: List[int],
    *,
    stop_words: List[str],
    eod_token_ids: List[int],
    tokenizer: PreTrainedTokenizer,
    raw_text_len: int,
    context_length: int,
    verbose: bool = False,
    return_end_reason: bool = False,
    chat_format = "chatml",
):
    end_reason = f"Gen length {len(tokens)}"
    eod_token_idx = context_length
    for eod_token_idx in range(context_length, len(tokens)):
        if tokens[eod_token_idx] in eod_token_ids:
            end_reason = f"Gen {tokenizer.decode([tokens[eod_token_idx]])!r}"
            break

    trim_decode_tokens = tokenizer.decode(tokens[:eod_token_idx])[raw_text_len:]
    if verbose:
        print("\nRaw Generate w/o EOD:", tokenizer.decode(tokens)[raw_text_len:])
        print("\nRaw Generate:", trim_decode_tokens)
        print("\nEnd Reason:", end_reason)
    for stop_word in stop_words:
        trim_decode_tokens = trim_decode_tokens.replace(stop_word, "").strip()
    trim_decode_tokens = trim_decode_tokens.strip()
    if verbose:
        print("\nGenerate:", trim_decode_tokens)

    if return_end_reason:
        return trim_decode_tokens, end_reason
    else:
        return trim_decode_tokens



def load_models_tokenizer(args):
    from transformers import AutoModelForCausalLM, AutoTokenizer
    from transformers.generation import GenerationConfig

    tokenizer = AutoTokenizer.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model = AutoModelForCausalLM.from_pretrained(args.checkpoint_path, device_map="auto", trust_remote_code=True).eval()
    model.generation_config = GenerationConfig.from_pretrained(args.checkpoint_path, trust_remote_code=True)
    model.generation_config.do_sample = False # use greedy decoding
    return model, tokenizer


def process_before_extraction(gen, question, choice_dict):
    # Example Prompt:
    # 关于传输层的面向连接服务的特性是____。
    # A. 既不保证可靠,也不保证按序交付
    # B. 不保证可靠,但保证按序交付
    # C. 保证可靠,但不保证按序交付
    # D. 既保证可靠,也保证按序交付
    # Example Model Output:
    # 关于传输层的面向连接服务的特性是既保证可靠,也保证按序交付
    # Processed Output:
    # 答案是D

    question_split = question.rstrip("。").split("。")[-1].split("_")

    # replacing the question
    if len(question_split[0].strip()) > 4:
        gen = gen.replace(question_split[0], "答案是")
    if len(question_split[-1].strip()) > 4:
        gen = gen.replace(question_split[-1], "")

    # replace the choice by letter in the generated sentence
    # from longest one to shortest one
    for key, val in sorted(choice_dict.items(), key=lambda x: len(x[1]), reverse=True):
        gen = gen.replace(val.rstrip("。"), key)
    return gen


def count_substr(gen, pattern):
    return len(re.findall(pattern, gen))


def extract_choice(gen, prompt, choice_list):
    # 答案是A | 选项是A | 应该选A选项
    res = re.search(
        r"(?:(?:选|选择|选定)[::]?\s*|(?:(?:答案|选项)(?![^ABCD]{0,10}?(?:不|非)[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?(?:是|选|为|:|:|】))[^ABCD]{0,10}?)(A|B|C|D)(?:选项)?(?:\)|。|\.|,|,|.|、|A|B|C|D|$|:|:|\)|))",
        gen,
    )

    # A选项正确 | A选项符合题意
    if res is None:
        res = re.search(
            r"(A|B|C|D)(?:选?项)?(?![^ABCD]{0,4}?(?:不|非)[^ABCD]{0,4}?(?:正确|对[的,。:]|符合))[^ABCD]{0,4}?(?:正确|对[的,。:]|符合)",
            gen,
        )

    # 直接输出 A
    if res is None:
        res = re.search(r"^[\((]?(A|B|C|D)(?:。|\)|)|\.|,|,|.|:|:|$)", gen)

    # 获取第一个出现的字母
    if res is None:
        res = re.search(r"(?<![a-zA-Z])(A|B|C|D)(?![a-zA-Z=])", gen)

    if res is None:
        return choices[choice_list.index(process.extractOne(gen, choice_list)[0])]
    return res.group(1)


def format_example(line):
    example = line["question"] + "\n\n"
    for choice in choices:
        example += f'{choice}. {line[f"{choice}"]}\n'
    return example


def extract_answer(response, row):
    prompt = row["question"]
    gen = process_before_extraction(
        response, prompt, {choice: row[choice] for choice in choices}
    )
    if not isinstance(prompt, str):
        prompt = prompt[0]
    pred = extract_choice(gen, prompt, [row[choice] for choice in choices])
    return pred


@torch.no_grad()
def eval_subject(
    model,
    tokenizer,
    subject_name,
    test_df,
    save_result_dir=None,
    overwrite=False,
    **kwargs
):
    result_path = os.path.join(save_result_dir, f"{subject_name}_result.csv")
    if not overwrite and os.path.exists(result_path):
        print(f"{result_path} existed, skip!")
        score = []
        for (_, datarow), (_, resultrow) in zip(
            test_df.iterrows(), pd.read_csv(result_path).iterrows()
        ):
            pred = extract_answer(resultrow["model_response"], datarow)
            correct = 1 if pred == datarow["answer"] else 0
            score.append(correct)
        correct_ratio = 100 * sum(score) / len(score)
        return correct_ratio

    responses = []
    result = []
    score = []

    for _, row in tqdm(test_df.iterrows(), total=len(test_df)):
        question = format_example(row)

        response, _ = chat(
            model,
            tokenizer,
            question,
            history=None,
        )
        print(question)
        print(response)
        pred = extract_answer(response, row)
        print(pred)
        print("======================")

        if "answer" in row:
            correct = 1 if pred == row["answer"] else 0
            score.append(correct)
            if args.debug:
                print(f'{question} pred: {pred} ref: {row["answer"]}')
        responses.append(response)
        result.append(pred)

    if score:
        correct_ratio = 100 * sum(score) / len(score)
        if args.debug:
            print(subject_name, correct_ratio)
    else:
        correct_ratio = 0
    if save_result_dir:
        test_df["model_response"] = responses
        test_df["model_output"] = result
        if score:
            test_df["correctness"] = score
        os.makedirs(save_result_dir, exist_ok=True)
        test_df.to_csv(result_path, encoding="utf-8", index=False)

    return correct_ratio


def cal_ceval(res):
    acc_sum_dict = dict()
    acc_norm_sum_dict = dict()
    cnt_dict = dict()
    acc_sum = 0.0
    cnt = 0
    hard_cnt = 0
    hard_acc_sum = 0.0
    for tt in res.keys():
        name = tt.split("-")[-1]
        acc_sum += float(res[tt])
        cnt += 1
        class_ = TASK_NAME_MAPPING[name][2]
        if class_ not in acc_sum_dict:
            acc_sum_dict[class_] = 0.0
            acc_norm_sum_dict[class_] = 0.0
            cnt_dict[class_] = 0.0
        if name in hard_list:
            hard_cnt += 1
            hard_acc_sum += float(res[tt])
        acc_sum_dict[class_] += float(res[tt])
        cnt_dict[class_] += 1
    print("\n\n\n")
    for k in ["STEM", "Social Science", "Humanities", "Other"]:
        if k in cnt_dict:
            print("%s acc: %.2f " % (k, acc_sum_dict[k] / cnt_dict[k]))
    if hard_cnt > 0:
        print("Hard acc:%.2f " % (hard_acc_sum / hard_cnt))
    print("AVERAGE acc:%.2f " % (acc_sum / cnt))


TASK_NAME_MAPPING = {
    "computer_network": ["Computer Network", "\u8ba1\u7b97\u673a\u7f51\u7edc", "STEM"],
    "operating_system": ["Operating System", "\u64cd\u4f5c\u7cfb\u7edf", "STEM"],
    "computer_architecture": [
        "Computer Architecture",
        "\u8ba1\u7b97\u673a\u7ec4\u6210",
        "STEM",
    ],
    "college_programming": ["College Programming", "\u5927\u5b66\u7f16\u7a0b", "STEM"],
    "college_physics": ["College Physics", "\u5927\u5b66\u7269\u7406", "STEM"],
    "college_chemistry": ["College Chemistry", "\u5927\u5b66\u5316\u5b66", "STEM"],
    "advanced_mathematics": [
        "Advanced Mathematics",
        "\u9ad8\u7b49\u6570\u5b66",
        "STEM",
    ],
    "probability_and_statistics": [
        "Probability and Statistics",
        "\u6982\u7387\u7edf\u8ba1",
        "STEM",
    ],
    "discrete_mathematics": [
        "Discrete Mathematics",
        "\u79bb\u6563\u6570\u5b66",
        "STEM",
    ],
    "electrical_engineer": [
        "Electrical Engineer",
        "\u6ce8\u518c\u7535\u6c14\u5de5\u7a0b\u5e08",
        "STEM",
    ],
    "metrology_engineer": [
        "Metrology Engineer",
        "\u6ce8\u518c\u8ba1\u91cf\u5e08",
        "STEM",
    ],
    "high_school_mathematics": [
        "High School Mathematics",
        "\u9ad8\u4e2d\u6570\u5b66",
        "STEM",
    ],
    "high_school_physics": ["High School Physics", "\u9ad8\u4e2d\u7269\u7406", "STEM"],
    "high_school_chemistry": [
        "High School Chemistry",
        "\u9ad8\u4e2d\u5316\u5b66",
        "STEM",
    ],
    "high_school_biology": ["High School Biology", "\u9ad8\u4e2d\u751f\u7269", "STEM"],
    "middle_school_mathematics": [
        "Middle School Mathematics",
        "\u521d\u4e2d\u6570\u5b66",
        "STEM",
    ],
    "middle_school_biology": [
        "Middle School Biology",
        "\u521d\u4e2d\u751f\u7269",
        "STEM",
    ],
    "middle_school_physics": [
        "Middle School Physics",
        "\u521d\u4e2d\u7269\u7406",
        "STEM",
    ],
    "middle_school_chemistry": [
        "Middle School Chemistry",
        "\u521d\u4e2d\u5316\u5b66",
        "STEM",
    ],
    "veterinary_medicine": ["Veterinary Medicine", "\u517d\u533b\u5b66", "STEM"],
    "college_economics": [
        "College Economics",
        "\u5927\u5b66\u7ecf\u6d4e\u5b66",
        "Social Science",
    ],
    "business_administration": [
        "Business Administration",
        "\u5de5\u5546\u7ba1\u7406",
        "Social Science",
    ],
    "marxism": [
        "Marxism",
        "\u9a6c\u514b\u601d\u4e3b\u4e49\u57fa\u672c\u539f\u7406",
        "Social Science",
    ],
    "mao_zedong_thought": [
        "Mao Zedong Thought",
        "\u6bdb\u6cfd\u4e1c\u601d\u60f3\u548c\u4e2d\u56fd\u7279\u8272\u793e\u4f1a\u4e3b\u4e49\u7406\u8bba\u4f53\u7cfb\u6982\u8bba",
        "Social Science",
    ],
    "education_science": ["Education Science", "\u6559\u80b2\u5b66", "Social Science"],
    "teacher_qualification": [
        "Teacher Qualification",
        "\u6559\u5e08\u8d44\u683c",
        "Social Science",
    ],
    "high_school_politics": [
        "High School Politics",
        "\u9ad8\u4e2d\u653f\u6cbb",
        "Social Science",
    ],
    "high_school_geography": [
        "High School Geography",
        "\u9ad8\u4e2d\u5730\u7406",
        "Social Science",
    ],
    "middle_school_politics": [
        "Middle School Politics",
        "\u521d\u4e2d\u653f\u6cbb",
        "Social Science",
    ],
    "middle_school_geography": [
        "Middle School Geography",
        "\u521d\u4e2d\u5730\u7406",
        "Social Science",
    ],
    "modern_chinese_history": [
        "Modern Chinese History",
        "\u8fd1\u4ee3\u53f2\u7eb2\u8981",
        "Humanities",
    ],
    "ideological_and_moral_cultivation": [
        "Ideological and Moral Cultivation",
        "\u601d\u60f3\u9053\u5fb7\u4fee\u517b\u4e0e\u6cd5\u5f8b\u57fa\u7840",
        "Humanities",
    ],
    "logic": ["Logic", "\u903b\u8f91\u5b66", "Humanities"],
    "law": ["Law", "\u6cd5\u5b66", "Humanities"],
    "chinese_language_and_literature": [
        "Chinese Language and Literature",
        "\u4e2d\u56fd\u8bed\u8a00\u6587\u5b66",
        "Humanities",
    ],
    "art_studies": ["Art Studies", "\u827a\u672f\u5b66", "Humanities"],
    "professional_tour_guide": [
        "Professional Tour Guide",
        "\u5bfc\u6e38\u8d44\u683c",
        "Humanities",
    ],
    "legal_professional": [
        "Legal Professional",
        "\u6cd5\u5f8b\u804c\u4e1a\u8d44\u683c",
        "Humanities",
    ],
    "high_school_chinese": [
        "High School Chinese",
        "\u9ad8\u4e2d\u8bed\u6587",
        "Humanities",
    ],
    "high_school_history": [
        "High School History",
        "\u9ad8\u4e2d\u5386\u53f2",
        "Humanities",
    ],
    "middle_school_history": [
        "Middle School History",
        "\u521d\u4e2d\u5386\u53f2",
        "Humanities",
    ],
    "civil_servant": ["Civil Servant", "\u516c\u52a1\u5458", "Other"],
    "sports_science": ["Sports Science", "\u4f53\u80b2\u5b66", "Other"],
    "plant_protection": ["Plant Protection", "\u690d\u7269\u4fdd\u62a4", "Other"],
    "basic_medicine": ["Basic Medicine", "\u57fa\u7840\u533b\u5b66", "Other"],
    "clinical_medicine": ["Clinical Medicine", "\u4e34\u5e8a\u533b\u5b66", "Other"],
    "urban_and_rural_planner": [
        "Urban and Rural Planner",
        "\u6ce8\u518c\u57ce\u4e61\u89c4\u5212\u5e08",
        "Other",
    ],
    "accountant": ["Accountant", "\u6ce8\u518c\u4f1a\u8ba1\u5e08", "Other"],
    "fire_engineer": [
        "Fire Engineer",
        "\u6ce8\u518c\u6d88\u9632\u5de5\u7a0b\u5e08",
        "Other",
    ],
    "environmental_impact_assessment_engineer": [
        "Environmental Impact Assessment Engineer",
        "\u73af\u5883\u5f71\u54cd\u8bc4\u4ef7\u5de5\u7a0b\u5e08",
        "Other",
    ],
    "tax_accountant": ["Tax Accountant", "\u7a0e\u52a1\u5e08", "Other"],
    "physician": ["Physician", "\u533b\u5e08\u8d44\u683c", "Other"],
}
hard_list = [
    "advanced_mathematics",
    "discrete_mathematics",
    "probability_and_statistics",
    "college_physics",
    "college_chemistry",
    "high_school_mathematics",
    "high_school_physics",
    "high_school_chemistry",
]
choices = ["A", "B", "C", "D"]


def main(args):
    print("loading model weights")
    if args.checkpoint_path:
        model, tokenizer = load_models_tokenizer(args)
    else:
        model, tokenizer = None, None
    print("model loaded")
    dev_result = {}
    for subject_name in tqdm(TASK_NAME_MAPPING.keys()):
        val_file_path = os.path.join(
            args.eval_data_path, "val", f"{subject_name}_val.csv"
        )
        val_df = pd.read_csv(val_file_path)

        score = eval_subject(
            model,
            tokenizer,
            subject_name,
            val_df,
            save_result_dir="outs_chat/ceval_eval_result",
            overwrite=args.overwrite,
        )
        dev_result[subject_name] = score
    cal_ceval(dev_result)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Test HF checkpoint.")
    parser.add_argument(
        "-c",
        "--checkpoint-path",
        type=str,
        help="Checkpoint path",
        default="Qwen/Qwen-7B-Chat",
    )
    parser.add_argument("-s", "--seed", type=int, default=1234, help="Random seed")

    # Provide extra arguments required for tasks
    group = parser.add_argument_group(title="Evaluation options")
    group.add_argument(
        "-d", "--eval_data_path", type=str, required=True, help="Path to eval data"
    )
    group.add_argument(
        "--debug", action="store_true", default=False, help="Print infos."
    )
    group.add_argument(
        "--overwrite",
        action="store_true",
        default=False,
        help="Overwrite existed results",
    )

    args = parser.parse_args()
    set_seed(args.seed)

    main(args)