File size: 54,184 Bytes
aee006d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/Users/wangkaiyuan/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/urllib3/__init__.py:35: NotOpenSSLWarning: urllib3 v2 only supports OpenSSL 1.1.1+, currently the 'ssl' module is compiled with 'LibreSSL 2.8.3'. See: https://github.com/urllib3/urllib3/issues/3020\n",
      "  warnings.warn(\n"
     ]
    }
   ],
   "source": [
    "import pandas as pd\n",
    "import requests\n",
    "from bs4 import BeautifulSoup"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>url</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>https://www.foxnews.com/lifestyle/jack-carrs-e...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>https://www.foxnews.com/entertainment/bruce-wi...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>https://www.foxnews.com/politics/blinken-meets...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>https://www.foxnews.com/entertainment/emily-bl...</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>https://www.foxnews.com/media/the-view-co-host...</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                 url\n",
       "0  https://www.foxnews.com/lifestyle/jack-carrs-e...\n",
       "1  https://www.foxnews.com/entertainment/bruce-wi...\n",
       "2  https://www.foxnews.com/politics/blinken-meets...\n",
       "3  https://www.foxnews.com/entertainment/emily-bl...\n",
       "4  https://www.foxnews.com/media/the-view-co-host..."
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# load csv file and process the data\n",
    "urls_df = pd.read_csv('url_only_data.csv')\n",
    "urls_df.head()\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {},
   "outputs": [],
   "source": [
    "# define the function to fetch the title of the news article\n",
    "def fetch_title(url):\n",
    "    try:\n",
    "        response = requests.get(url)\n",
    "        if response.status_code != 200:\n",
    "            return f\"Error: {response.status_code}\"\n",
    "        soup = BeautifulSoup(response.text, \"html.parser\")\n",
    "        # Try to find the headline based on a common class used on Fox News pages\n",
    "        title = soup.find(\"h1\", class_=\"headline speakable\")\n",
    "        return title.text.strip() if title else \"Title not found\"\n",
    "    except Exception as e:\n",
    "        return f\"Error: {e}\"\n",
    "\n",
    "def fetch_title_altered(url):\n",
    "    try:\n",
    "        response = requests.get(url)\n",
    "        if response.status_code != 200:\n",
    "            return f\"Error: {response.status_code}\"\n",
    "        soup = BeautifulSoup(response.text, \"html.parser\")\n",
    "        # Try to find the headline based on a common class used on Fox News pages\n",
    "        title = soup.find(\"h1\")\n",
    "        return title.text.strip() if title else \"Title not found\"\n",
    "    except Exception as e:\n",
    "        return f\"Error: {e}\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "# remove the '.print' from the urls\n",
    "urls_df['url'] = urls_df['url'].str.replace('.print', '', regex=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "ename": "KeyboardInterrupt",
     "evalue": "",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m                         Traceback (most recent call last)",
      "Cell \u001b[0;32mIn[5], line 2\u001b[0m\n\u001b[1;32m      1\u001b[0m \u001b[38;5;66;03m# fetch the title of the news article\u001b[39;00m\n\u001b[0;32m----> 2\u001b[0m urls_df[\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mtitle\u001b[39m\u001b[38;5;124m'\u001b[39m] \u001b[38;5;241m=\u001b[39m \u001b[43murls_df\u001b[49m\u001b[43m[\u001b[49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43murl\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m]\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfetch_title\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/pandas/core/series.py:4917\u001b[0m, in \u001b[0;36mSeries.apply\u001b[0;34m(self, func, convert_dtype, args, by_row, **kwargs)\u001b[0m\n\u001b[1;32m   4789\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mapply\u001b[39m(\n\u001b[1;32m   4790\u001b[0m     \u001b[38;5;28mself\u001b[39m,\n\u001b[1;32m   4791\u001b[0m     func: AggFuncType,\n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   4796\u001b[0m     \u001b[38;5;241m*\u001b[39m\u001b[38;5;241m*\u001b[39mkwargs,\n\u001b[1;32m   4797\u001b[0m ) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m DataFrame \u001b[38;5;241m|\u001b[39m Series:\n\u001b[1;32m   4798\u001b[0m \u001b[38;5;250m    \u001b[39m\u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m   4799\u001b[0m \u001b[38;5;124;03m    Invoke function on values of Series.\u001b[39;00m\n\u001b[1;32m   4800\u001b[0m \n\u001b[0;32m   (...)\u001b[0m\n\u001b[1;32m   4915\u001b[0m \u001b[38;5;124;03m    dtype: float64\u001b[39;00m\n\u001b[1;32m   4916\u001b[0m \u001b[38;5;124;03m    \"\"\"\u001b[39;00m\n\u001b[0;32m-> 4917\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mSeriesApply\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   4918\u001b[0m \u001b[43m        \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4919\u001b[0m \u001b[43m        \u001b[49m\u001b[43mfunc\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4920\u001b[0m \u001b[43m        \u001b[49m\u001b[43mconvert_dtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconvert_dtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4921\u001b[0m \u001b[43m        \u001b[49m\u001b[43mby_row\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mby_row\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4922\u001b[0m \u001b[43m        \u001b[49m\u001b[43margs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4923\u001b[0m \u001b[43m        \u001b[49m\u001b[43mkwargs\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mkwargs\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m   4924\u001b[0m \u001b[43m    \u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/pandas/core/apply.py:1427\u001b[0m, in \u001b[0;36mSeriesApply.apply\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1424\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mapply_compat()\n\u001b[1;32m   1426\u001b[0m \u001b[38;5;66;03m# self.func is Callable\u001b[39;00m\n\u001b[0;32m-> 1427\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mapply_standard\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/pandas/core/apply.py:1507\u001b[0m, in \u001b[0;36mSeriesApply.apply_standard\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m   1501\u001b[0m \u001b[38;5;66;03m# row-wise access\u001b[39;00m\n\u001b[1;32m   1502\u001b[0m \u001b[38;5;66;03m# apply doesn't have a `na_action` keyword and for backward compat reasons\u001b[39;00m\n\u001b[1;32m   1503\u001b[0m \u001b[38;5;66;03m# we need to give `na_action=\"ignore\"` for categorical data.\u001b[39;00m\n\u001b[1;32m   1504\u001b[0m \u001b[38;5;66;03m# TODO: remove the `na_action=\"ignore\"` when that default has been changed in\u001b[39;00m\n\u001b[1;32m   1505\u001b[0m \u001b[38;5;66;03m#  Categorical (GH51645).\u001b[39;00m\n\u001b[1;32m   1506\u001b[0m action \u001b[38;5;241m=\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mignore\u001b[39m\u001b[38;5;124m\"\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(obj\u001b[38;5;241m.\u001b[39mdtype, CategoricalDtype) \u001b[38;5;28;01melse\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m\n\u001b[0;32m-> 1507\u001b[0m mapped \u001b[38;5;241m=\u001b[39m \u001b[43mobj\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_map_values\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m   1508\u001b[0m \u001b[43m    \u001b[49m\u001b[43mmapper\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcurried\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_action\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43maction\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconvert\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mconvert_dtype\u001b[49m\n\u001b[1;32m   1509\u001b[0m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1511\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(mapped) \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(mapped[\u001b[38;5;241m0\u001b[39m], ABCSeries):\n\u001b[1;32m   1512\u001b[0m     \u001b[38;5;66;03m# GH#43986 Need to do list(mapped) in order to get treated as nested\u001b[39;00m\n\u001b[1;32m   1513\u001b[0m     \u001b[38;5;66;03m#  See also GH#25959 regarding EA support\u001b[39;00m\n\u001b[1;32m   1514\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m obj\u001b[38;5;241m.\u001b[39m_constructor_expanddim(\u001b[38;5;28mlist\u001b[39m(mapped), index\u001b[38;5;241m=\u001b[39mobj\u001b[38;5;241m.\u001b[39mindex)\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/pandas/core/base.py:921\u001b[0m, in \u001b[0;36mIndexOpsMixin._map_values\u001b[0;34m(self, mapper, na_action, convert)\u001b[0m\n\u001b[1;32m    918\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28misinstance\u001b[39m(arr, ExtensionArray):\n\u001b[1;32m    919\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m arr\u001b[38;5;241m.\u001b[39mmap(mapper, na_action\u001b[38;5;241m=\u001b[39mna_action)\n\u001b[0;32m--> 921\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43malgorithms\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmap_array\u001b[49m\u001b[43m(\u001b[49m\u001b[43marr\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmapper\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mna_action\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mna_action\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconvert\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconvert\u001b[49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/pandas/core/algorithms.py:1743\u001b[0m, in \u001b[0;36mmap_array\u001b[0;34m(arr, mapper, na_action, convert)\u001b[0m\n\u001b[1;32m   1741\u001b[0m values \u001b[38;5;241m=\u001b[39m arr\u001b[38;5;241m.\u001b[39mastype(\u001b[38;5;28mobject\u001b[39m, copy\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mFalse\u001b[39;00m)\n\u001b[1;32m   1742\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m na_action \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m-> 1743\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mlib\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmap_infer\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmapper\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mconvert\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mconvert\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m   1744\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m   1745\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m lib\u001b[38;5;241m.\u001b[39mmap_infer_mask(\n\u001b[1;32m   1746\u001b[0m         values, mapper, mask\u001b[38;5;241m=\u001b[39misna(values)\u001b[38;5;241m.\u001b[39mview(np\u001b[38;5;241m.\u001b[39muint8), convert\u001b[38;5;241m=\u001b[39mconvert\n\u001b[1;32m   1747\u001b[0m     )\n",
      "File \u001b[0;32mlib.pyx:2972\u001b[0m, in \u001b[0;36mpandas._libs.lib.map_infer\u001b[0;34m()\u001b[0m\n",
      "Cell \u001b[0;32mIn[3], line 7\u001b[0m, in \u001b[0;36mfetch_title\u001b[0;34m(url)\u001b[0m\n\u001b[1;32m      5\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m response\u001b[38;5;241m.\u001b[39mstatus_code \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m200\u001b[39m:\n\u001b[1;32m      6\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mError: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mresponse\u001b[38;5;241m.\u001b[39mstatus_code\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m----> 7\u001b[0m soup \u001b[38;5;241m=\u001b[39m \u001b[43mBeautifulSoup\u001b[49m\u001b[43m(\u001b[49m\u001b[43mresponse\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mtext\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[38;5;124;43mhtml.parser\u001b[39;49m\u001b[38;5;124;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[1;32m      8\u001b[0m \u001b[38;5;66;03m# Try to find the headline based on a common class used on Fox News pages\u001b[39;00m\n\u001b[1;32m      9\u001b[0m title \u001b[38;5;241m=\u001b[39m soup\u001b[38;5;241m.\u001b[39mfind(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mh1\u001b[39m\u001b[38;5;124m\"\u001b[39m, class_\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mheadline speakable\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/bs4/__init__.py:335\u001b[0m, in \u001b[0;36mBeautifulSoup.__init__\u001b[0;34m(self, markup, features, builder, parse_only, from_encoding, exclude_encodings, element_classes, **kwargs)\u001b[0m\n\u001b[1;32m    333\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder\u001b[38;5;241m.\u001b[39minitialize_soup(\u001b[38;5;28mself\u001b[39m)\n\u001b[1;32m    334\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 335\u001b[0m     \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43m_feed\u001b[49m\u001b[43m(\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    336\u001b[0m     success \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;01mTrue\u001b[39;00m\n\u001b[1;32m    337\u001b[0m     \u001b[38;5;28;01mbreak\u001b[39;00m\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/bs4/__init__.py:478\u001b[0m, in \u001b[0;36mBeautifulSoup._feed\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m    475\u001b[0m \u001b[38;5;66;03m# Convert the document to Unicode.\u001b[39;00m\n\u001b[1;32m    476\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mbuilder\u001b[38;5;241m.\u001b[39mreset()\n\u001b[0;32m--> 478\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mbuilder\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeed\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmarkup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    479\u001b[0m \u001b[38;5;66;03m# Close out any unfinished strings and close all the open tags.\u001b[39;00m\n\u001b[1;32m    480\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mendData()\n",
      "File \u001b[0;32m~/Desktop/UPenn/Fall 2024/CIS 5190/CIS5190finalproj/.venv/lib/python3.9/site-packages/bs4/builder/_htmlparser.py:380\u001b[0m, in \u001b[0;36mHTMLParserTreeBuilder.feed\u001b[0;34m(self, markup)\u001b[0m\n\u001b[1;32m    378\u001b[0m parser\u001b[38;5;241m.\u001b[39msoup \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39msoup\n\u001b[1;32m    379\u001b[0m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[0;32m--> 380\u001b[0m     \u001b[43mparser\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mfeed\u001b[49m\u001b[43m(\u001b[49m\u001b[43mmarkup\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    381\u001b[0m     parser\u001b[38;5;241m.\u001b[39mclose()\n\u001b[1;32m    382\u001b[0m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mAssertionError\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[1;32m    383\u001b[0m     \u001b[38;5;66;03m# html.parser raises AssertionError in rare cases to\u001b[39;00m\n\u001b[1;32m    384\u001b[0m     \u001b[38;5;66;03m# indicate a fatal problem with the markup, especially\u001b[39;00m\n\u001b[1;32m    385\u001b[0m     \u001b[38;5;66;03m# when there's an error in the doctype declaration.\u001b[39;00m\n",
      "File \u001b[0;32m/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/html/parser.py:110\u001b[0m, in \u001b[0;36mHTMLParser.feed\u001b[0;34m(self, data)\u001b[0m\n\u001b[1;32m    104\u001b[0m \u001b[38;5;250m\u001b[39m\u001b[38;5;124mr\u001b[39m\u001b[38;5;124;03m\"\"\"Feed data to the parser.\u001b[39;00m\n\u001b[1;32m    105\u001b[0m \n\u001b[1;32m    106\u001b[0m \u001b[38;5;124;03mCall this as often as you want, with as little or as much text\u001b[39;00m\n\u001b[1;32m    107\u001b[0m \u001b[38;5;124;03mas you want (may include '\\n').\u001b[39;00m\n\u001b[1;32m    108\u001b[0m \u001b[38;5;124;03m\"\"\"\u001b[39;00m\n\u001b[1;32m    109\u001b[0m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrawdata \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mrawdata \u001b[38;5;241m+\u001b[39m data\n\u001b[0;32m--> 110\u001b[0m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mgoahead\u001b[49m\u001b[43m(\u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m)\u001b[49m\n",
      "File \u001b[0;32m/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/html/parser.py:172\u001b[0m, in \u001b[0;36mHTMLParser.goahead\u001b[0;34m(self, end)\u001b[0m\n\u001b[1;32m    170\u001b[0m     k \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_starttag(i)\n\u001b[1;32m    171\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m startswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m</\u001b[39m\u001b[38;5;124m\"\u001b[39m, i):\n\u001b[0;32m--> 172\u001b[0m     k \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mparse_endtag\u001b[49m\u001b[43m(\u001b[49m\u001b[43mi\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m    173\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m startswith(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m<!--\u001b[39m\u001b[38;5;124m\"\u001b[39m, i):\n\u001b[1;32m    174\u001b[0m     k \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mparse_comment(i)\n",
      "File \u001b[0;32m/Library/Developer/CommandLineTools/Library/Frameworks/Python3.framework/Versions/3.9/lib/python3.9/html/parser.py:392\u001b[0m, in \u001b[0;36mHTMLParser.parse_endtag\u001b[0;34m(self, i)\u001b[0m\n\u001b[1;32m    390\u001b[0m     \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m\n\u001b[1;32m    391\u001b[0m gtpos \u001b[38;5;241m=\u001b[39m match\u001b[38;5;241m.\u001b[39mend()\n\u001b[0;32m--> 392\u001b[0m match \u001b[38;5;241m=\u001b[39m \u001b[43mendtagfind\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mmatch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mrawdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mi\u001b[49m\u001b[43m)\u001b[49m \u001b[38;5;66;03m# </ + tag + >\u001b[39;00m\n\u001b[1;32m    393\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m match:\n\u001b[1;32m    394\u001b[0m     \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mcdata_elem \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n",
      "\u001b[0;31mKeyboardInterrupt\u001b[0m: "
     ]
    }
   ],
   "source": [
    "# fetch the title of the news article\n",
    "urls_df['title'] = urls_df['url'].apply(fetch_title)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "/var/folders/y8/__mdhnk12l9d1zxvj_wms9h00000gn/T/ipykernel_38707/2702622145.py:3: SettingWithCopyWarning: \n",
      "A value is trying to be set on a copy of a slice from a DataFrame.\n",
      "Try using .loc[row_indexer,col_indexer] = value instead\n",
      "\n",
      "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n",
      "  not_found['title'] = not_found['url'].apply(fetch_title_altered)\n"
     ]
    }
   ],
   "source": [
    "# fetch the title of the news article that was not found\n",
    "not_found = urls_df[urls_df['title'] == 'Title not found']\n",
    "not_found['title'] = not_found['url'].apply(fetch_title_altered)\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [],
   "source": [
    "urls_df.update(not_found)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [],
   "source": [
    "# remove duplicates titles\n",
    "urls_df.drop_duplicates(subset='title', keep='first', inplace=True)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {},
   "outputs": [],
   "source": [
    "# convert title to string\n",
    "urls_df['title'] = urls_df['title'].astype(str)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# remove the \" \"\" \" from the titles\n",
    "urls_df['title'] = urls_df['title'].str.strip('\"')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {},
   "outputs": [],
   "source": [
    "# save the data to a new csv file\n",
    "urls_df.to_csv('fetched_headlines.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Split the data into training and testing sets\n",
    "from sklearn.model_selection import train_test_split\n",
    "from sklearn.feature_extraction.text import TfidfVectorizer\n",
    "from sklearn.linear_model import LogisticRegression\n",
    "from sklearn.metrics import classification_report\n",
    "from sklearn.metrics import accuracy_score\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert the labels to binary values (0 for ’FoxNews’, 1 for ’NBC’)\n",
    "urls_df['label'] = urls_df['url'].apply(lambda x: 0 if 'foxnews.com' in x else 1 if 'nbcnews.com' in x else None)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 97,
   "metadata": {},
   "outputs": [],
   "source": [
    "# split the data into training and testing sets\n",
    "X_train, X_test, y_train, y_test = train_test_split(urls_df['title'], urls_df['label'], test_size=0.2, random_state=42)\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {},
   "outputs": [],
   "source": [
    "# Convert the text data to TF-IDF features\n",
    "vectorizer = TfidfVectorizer(stop_words='english', max_features=100)\n",
    "X_train_tfidf = vectorizer.fit_transform(X_train)\n",
    "X_test_tfidf = vectorizer.transform(X_test)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<style>#sk-container-id-1 {\n",
       "  /* Definition of color scheme common for light and dark mode */\n",
       "  --sklearn-color-text: black;\n",
       "  --sklearn-color-line: gray;\n",
       "  /* Definition of color scheme for unfitted estimators */\n",
       "  --sklearn-color-unfitted-level-0: #fff5e6;\n",
       "  --sklearn-color-unfitted-level-1: #f6e4d2;\n",
       "  --sklearn-color-unfitted-level-2: #ffe0b3;\n",
       "  --sklearn-color-unfitted-level-3: chocolate;\n",
       "  /* Definition of color scheme for fitted estimators */\n",
       "  --sklearn-color-fitted-level-0: #f0f8ff;\n",
       "  --sklearn-color-fitted-level-1: #d4ebff;\n",
       "  --sklearn-color-fitted-level-2: #b3dbfd;\n",
       "  --sklearn-color-fitted-level-3: cornflowerblue;\n",
       "\n",
       "  /* Specific color for light theme */\n",
       "  --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));\n",
       "  --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));\n",
       "  --sklearn-color-icon: #696969;\n",
       "\n",
       "  @media (prefers-color-scheme: dark) {\n",
       "    /* Redefinition of color scheme for dark theme */\n",
       "    --sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));\n",
       "    --sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));\n",
       "    --sklearn-color-icon: #878787;\n",
       "  }\n",
       "}\n",
       "\n",
       "#sk-container-id-1 {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 pre {\n",
       "  padding: 0;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-hidden--visually {\n",
       "  border: 0;\n",
       "  clip: rect(1px 1px 1px 1px);\n",
       "  clip: rect(1px, 1px, 1px, 1px);\n",
       "  height: 1px;\n",
       "  margin: -1px;\n",
       "  overflow: hidden;\n",
       "  padding: 0;\n",
       "  position: absolute;\n",
       "  width: 1px;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-dashed-wrapped {\n",
       "  border: 1px dashed var(--sklearn-color-line);\n",
       "  margin: 0 0.4em 0.5em 0.4em;\n",
       "  box-sizing: border-box;\n",
       "  padding-bottom: 0.4em;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-container {\n",
       "  /* jupyter's `normalize.less` sets `[hidden] { display: none; }`\n",
       "     but bootstrap.min.css set `[hidden] { display: none !important; }`\n",
       "     so we also need the `!important` here to be able to override the\n",
       "     default hidden behavior on the sphinx rendered scikit-learn.org.\n",
       "     See: https://github.com/scikit-learn/scikit-learn/issues/21755 */\n",
       "  display: inline-block !important;\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-text-repr-fallback {\n",
       "  display: none;\n",
       "}\n",
       "\n",
       "div.sk-parallel-item,\n",
       "div.sk-serial,\n",
       "div.sk-item {\n",
       "  /* draw centered vertical line to link estimators */\n",
       "  background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));\n",
       "  background-size: 2px 100%;\n",
       "  background-repeat: no-repeat;\n",
       "  background-position: center center;\n",
       "}\n",
       "\n",
       "/* Parallel-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item::after {\n",
       "  content: \"\";\n",
       "  width: 100%;\n",
       "  border-bottom: 2px solid var(--sklearn-color-text-on-default-background);\n",
       "  flex-grow: 1;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel {\n",
       "  display: flex;\n",
       "  align-items: stretch;\n",
       "  justify-content: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  position: relative;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:first-child::after {\n",
       "  align-self: flex-end;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:last-child::after {\n",
       "  align-self: flex-start;\n",
       "  width: 50%;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-parallel-item:only-child::after {\n",
       "  width: 0;\n",
       "}\n",
       "\n",
       "/* Serial-specific style estimator block */\n",
       "\n",
       "#sk-container-id-1 div.sk-serial {\n",
       "  display: flex;\n",
       "  flex-direction: column;\n",
       "  align-items: center;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  padding-right: 1em;\n",
       "  padding-left: 1em;\n",
       "}\n",
       "\n",
       "\n",
       "/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is\n",
       "clickable and can be expanded/collapsed.\n",
       "- Pipeline and ColumnTransformer use this feature and define the default style\n",
       "- Estimators will overwrite some part of the style using the `sk-estimator` class\n",
       "*/\n",
       "\n",
       "/* Pipeline and ColumnTransformer style (default) */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable {\n",
       "  /* Default theme specific background. It is overwritten whether we have a\n",
       "  specific estimator or a Pipeline/ColumnTransformer */\n",
       "  background-color: var(--sklearn-color-background);\n",
       "}\n",
       "\n",
       "/* Toggleable label */\n",
       "#sk-container-id-1 label.sk-toggleable__label {\n",
       "  cursor: pointer;\n",
       "  display: block;\n",
       "  width: 100%;\n",
       "  margin-bottom: 0;\n",
       "  padding: 0.5em;\n",
       "  box-sizing: border-box;\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:before {\n",
       "  /* Arrow on the left of the label */\n",
       "  content: \"\";\n",
       "  float: left;\n",
       "  margin-right: 0.25em;\n",
       "  color: var(--sklearn-color-icon);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {\n",
       "  color: var(--sklearn-color-text);\n",
       "}\n",
       "\n",
       "/* Toggleable content - dropdown */\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content {\n",
       "  max-height: 0;\n",
       "  max-width: 0;\n",
       "  overflow: hidden;\n",
       "  text-align: left;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content pre {\n",
       "  margin: 0.2em;\n",
       "  border-radius: 0.25em;\n",
       "  color: var(--sklearn-color-text);\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-toggleable__content.fitted pre {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {\n",
       "  /* Expand drop-down */\n",
       "  max-height: 200px;\n",
       "  max-width: 100%;\n",
       "  overflow: auto;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {\n",
       "  content: \"\";\n",
       "}\n",
       "\n",
       "/* Pipeline/ColumnTransformer-specific style */\n",
       "\n",
       "#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator-specific style */\n",
       "\n",
       "/* Colorize estimator box */\n",
       "#sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label label.sk-toggleable__label,\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  /* The background is the default theme color */\n",
       "  color: var(--sklearn-color-text-on-default-background);\n",
       "}\n",
       "\n",
       "/* On hover, darken the color of the background */\n",
       "#sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "/* Label box, darken color on hover, fitted */\n",
       "#sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {\n",
       "  color: var(--sklearn-color-text);\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Estimator label */\n",
       "\n",
       "#sk-container-id-1 div.sk-label label {\n",
       "  font-family: monospace;\n",
       "  font-weight: bold;\n",
       "  display: inline-block;\n",
       "  line-height: 1.2em;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-label-container {\n",
       "  text-align: center;\n",
       "}\n",
       "\n",
       "/* Estimator-specific */\n",
       "#sk-container-id-1 div.sk-estimator {\n",
       "  font-family: monospace;\n",
       "  border: 1px dotted var(--sklearn-color-border-box);\n",
       "  border-radius: 0.25em;\n",
       "  box-sizing: border-box;\n",
       "  margin-bottom: 0.5em;\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-0);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-0);\n",
       "}\n",
       "\n",
       "/* on hover */\n",
       "#sk-container-id-1 div.sk-estimator:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-2);\n",
       "}\n",
       "\n",
       "#sk-container-id-1 div.sk-estimator.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-2);\n",
       "}\n",
       "\n",
       "/* Specification for estimator info (e.g. \"i\" and \"?\") */\n",
       "\n",
       "/* Common style for \"i\" and \"?\" */\n",
       "\n",
       ".sk-estimator-doc-link,\n",
       "a:link.sk-estimator-doc-link,\n",
       "a:visited.sk-estimator-doc-link {\n",
       "  float: right;\n",
       "  font-size: smaller;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1em;\n",
       "  height: 1em;\n",
       "  width: 1em;\n",
       "  text-decoration: none !important;\n",
       "  margin-left: 1ex;\n",
       "  /* unfitted */\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted,\n",
       "a:link.sk-estimator-doc-link.fitted,\n",
       "a:visited.sk-estimator-doc-link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "div.sk-estimator:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link:hover,\n",
       ".sk-estimator-doc-link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover,\n",
       "div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,\n",
       ".sk-estimator-doc-link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "/* Span, style for the box shown on hovering the info icon */\n",
       ".sk-estimator-doc-link span {\n",
       "  display: none;\n",
       "  z-index: 9999;\n",
       "  position: relative;\n",
       "  font-weight: normal;\n",
       "  right: .2ex;\n",
       "  padding: .5ex;\n",
       "  margin: .5ex;\n",
       "  width: min-content;\n",
       "  min-width: 20ex;\n",
       "  max-width: 50ex;\n",
       "  color: var(--sklearn-color-text);\n",
       "  box-shadow: 2pt 2pt 4pt #999;\n",
       "  /* unfitted */\n",
       "  background: var(--sklearn-color-unfitted-level-0);\n",
       "  border: .5pt solid var(--sklearn-color-unfitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link.fitted span {\n",
       "  /* fitted */\n",
       "  background: var(--sklearn-color-fitted-level-0);\n",
       "  border: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "\n",
       ".sk-estimator-doc-link:hover span {\n",
       "  display: block;\n",
       "}\n",
       "\n",
       "/* \"?\"-specific style due to the `<a>` HTML tag */\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link {\n",
       "  float: right;\n",
       "  font-size: 1rem;\n",
       "  line-height: 1em;\n",
       "  font-family: monospace;\n",
       "  background-color: var(--sklearn-color-background);\n",
       "  border-radius: 1rem;\n",
       "  height: 1rem;\n",
       "  width: 1rem;\n",
       "  text-decoration: none;\n",
       "  /* unfitted */\n",
       "  color: var(--sklearn-color-unfitted-level-1);\n",
       "  border: var(--sklearn-color-unfitted-level-1) 1pt solid;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted {\n",
       "  /* fitted */\n",
       "  border: var(--sklearn-color-fitted-level-1) 1pt solid;\n",
       "  color: var(--sklearn-color-fitted-level-1);\n",
       "}\n",
       "\n",
       "/* On hover */\n",
       "#sk-container-id-1 a.estimator_doc_link:hover {\n",
       "  /* unfitted */\n",
       "  background-color: var(--sklearn-color-unfitted-level-3);\n",
       "  color: var(--sklearn-color-background);\n",
       "  text-decoration: none;\n",
       "}\n",
       "\n",
       "#sk-container-id-1 a.estimator_doc_link.fitted:hover {\n",
       "  /* fitted */\n",
       "  background-color: var(--sklearn-color-fitted-level-3);\n",
       "}\n",
       "</style><div id=\"sk-container-id-1\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>LogisticRegression()</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator fitted sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-1\" type=\"checkbox\" checked><label for=\"sk-estimator-id-1\" class=\"sk-toggleable__label fitted sk-toggleable__label-arrow fitted\">&nbsp;&nbsp;LogisticRegression<a class=\"sk-estimator-doc-link fitted\" rel=\"noreferrer\" target=\"_blank\" href=\"https://scikit-learn.org/1.5/modules/generated/sklearn.linear_model.LogisticRegression.html\">?<span>Documentation for LogisticRegression</span></a><span class=\"sk-estimator-doc-link fitted\">i<span>Fitted</span></span></label><div class=\"sk-toggleable__content fitted\"><pre>LogisticRegression()</pre></div> </div></div></div></div>"
      ],
      "text/plain": [
       "LogisticRegression()"
      ]
     },
     "execution_count": 99,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Train a Logistic Regression model\n",
    "model = LogisticRegression(max_iter=100)\n",
    "model.fit(X_train_tfidf, y_train)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {},
   "outputs": [],
   "source": [
    "y_pred = model.predict(X_test_tfidf)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Accuracy: 0.7084\n",
      "Classification Report:\n",
      "               precision    recall  f1-score   support\n",
      "\n",
      "           0       0.72      0.80      0.76       427\n",
      "           1       0.70      0.59      0.64       331\n",
      "\n",
      "    accuracy                           0.71       758\n",
      "   macro avg       0.71      0.70      0.70       758\n",
      "weighted avg       0.71      0.71      0.70       758\n",
      "\n"
     ]
    }
   ],
   "source": [
    "# 7. Evaluate the model\n",
    "accuracy = accuracy_score(y_test, y_pred)\n",
    "print(f\"Accuracy: {accuracy:.4f}\")\n",
    "print(\"Classification Report:\\n\", classification_report(y_test, y_pred)\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "<bound method NDFrame.head of                                                     url  \\\n",
       "0     https://www.foxnews.com/lifestyle/jack-carrs-e...   \n",
       "1     https://www.foxnews.com/entertainment/bruce-wi...   \n",
       "2     https://www.foxnews.com/politics/blinken-meets...   \n",
       "3     https://www.foxnews.com/entertainment/emily-bl...   \n",
       "4     https://www.foxnews.com/media/the-view-co-host...   \n",
       "...                                                 ...   \n",
       "3784  https://www.nbcnews.com/politics/2024-election...   \n",
       "3785  https://www.nbcnews.com/select/shopping/best-a...   \n",
       "3786  https://www.nbcnews.com/select/shopping/best-v...   \n",
       "3787  https://www.nbcnews.com/politics/2024-election...   \n",
       "3788  https://www.nbcnews.com/select/shopping/white-...   \n",
       "\n",
       "                                                  title  label  \n",
       "0     Jack Carr recalls Gen. Eisenhower's D-Day memo...      0  \n",
       "1     Bruce Willis, Demi Moore avoided doing one thi...      0  \n",
       "2     Blinken meets Qatar PM, says Israeli actions a...      0  \n",
       "3     Emily Blunt says her ‘toes curl’ when people t...      0  \n",
       "4     'The View' co-host, CNN commentator Ana Navarr...      0  \n",
       "...                                                 ...    ...  \n",
       "3784  Trump's lawyers seek post-Election Day delay f...      1  \n",
       "3785  How to treat acne scars and hyperpigmentation,...      1  \n",
       "3786  7 best vegetarian and vegan meal delivery serv...      1  \n",
       "3787  Trump says presidential civilian award is 'bet...      1  \n",
       "3788  19 best white elephant and Secret Santa gift i...      1  \n",
       "\n",
       "[3789 rows x 3 columns]>"
      ]
     },
     "execution_count": 7,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.read_csv('fetched_headlines.csv')\n",
    "df.head"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>url</th>\n",
       "      <th>title</th>\n",
       "      <th>label</th>\n",
       "      <th>outlet</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>https://www.foxnews.com/lifestyle/jack-carrs-e...</td>\n",
       "      <td>Jack Carr recalls Gen. Eisenhower's D-Day memo...</td>\n",
       "      <td>0</td>\n",
       "      <td>FoxNews</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>https://www.foxnews.com/entertainment/bruce-wi...</td>\n",
       "      <td>Bruce Willis, Demi Moore avoided doing one thi...</td>\n",
       "      <td>0</td>\n",
       "      <td>FoxNews</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>https://www.foxnews.com/politics/blinken-meets...</td>\n",
       "      <td>Blinken meets Qatar PM, says Israeli actions a...</td>\n",
       "      <td>0</td>\n",
       "      <td>FoxNews</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>https://www.foxnews.com/entertainment/emily-bl...</td>\n",
       "      <td>Emily Blunt says her ‘toes curl’ when people t...</td>\n",
       "      <td>0</td>\n",
       "      <td>FoxNews</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>https://www.foxnews.com/media/the-view-co-host...</td>\n",
       "      <td>'The View' co-host, CNN commentator Ana Navarr...</td>\n",
       "      <td>0</td>\n",
       "      <td>FoxNews</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                                 url  \\\n",
       "0  https://www.foxnews.com/lifestyle/jack-carrs-e...   \n",
       "1  https://www.foxnews.com/entertainment/bruce-wi...   \n",
       "2  https://www.foxnews.com/politics/blinken-meets...   \n",
       "3  https://www.foxnews.com/entertainment/emily-bl...   \n",
       "4  https://www.foxnews.com/media/the-view-co-host...   \n",
       "\n",
       "                                               title  label   outlet  \n",
       "0  Jack Carr recalls Gen. Eisenhower's D-Day memo...      0  FoxNews  \n",
       "1  Bruce Willis, Demi Moore avoided doing one thi...      0  FoxNews  \n",
       "2  Blinken meets Qatar PM, says Israeli actions a...      0  FoxNews  \n",
       "3  Emily Blunt says her ‘toes curl’ when people t...      0  FoxNews  \n",
       "4  'The View' co-host, CNN commentator Ana Navarr...      0  FoxNews  "
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df['outlet'] = df['url'].apply(lambda x: 'FoxNews' if 'foxnews.com' in x else 'NBC')\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<style scoped>\n",
       "    .dataframe tbody tr th:only-of-type {\n",
       "        vertical-align: middle;\n",
       "    }\n",
       "\n",
       "    .dataframe tbody tr th {\n",
       "        vertical-align: top;\n",
       "    }\n",
       "\n",
       "    .dataframe thead th {\n",
       "        text-align: right;\n",
       "    }\n",
       "</style>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>title</th>\n",
       "      <th>outlet</th>\n",
       "      <th>label</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>Jack Carr recalls Gen. Eisenhower's D-Day memo...</td>\n",
       "      <td>FoxNews</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>Bruce Willis, Demi Moore avoided doing one thi...</td>\n",
       "      <td>FoxNews</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>Blinken meets Qatar PM, says Israeli actions a...</td>\n",
       "      <td>FoxNews</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>Emily Blunt says her ‘toes curl’ when people t...</td>\n",
       "      <td>FoxNews</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>4</th>\n",
       "      <td>'The View' co-host, CNN commentator Ana Navarr...</td>\n",
       "      <td>FoxNews</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "                                               title   outlet  label\n",
       "0  Jack Carr recalls Gen. Eisenhower's D-Day memo...  FoxNews      1\n",
       "1  Bruce Willis, Demi Moore avoided doing one thi...  FoxNews      1\n",
       "2  Blinken meets Qatar PM, says Israeli actions a...  FoxNews      1\n",
       "3  Emily Blunt says her ‘toes curl’ when people t...  FoxNews      1\n",
       "4  'The View' co-host, CNN commentator Ana Navarr...  FoxNews      1"
      ]
     },
     "execution_count": 10,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Swap label and outlet position and update label values\n",
    "df['label'] = df['outlet'].apply(lambda x: 1 if x == 'FoxNews' else 0)\n",
    "df = df[[ 'title', 'outlet', 'label']]\n",
    "df.head()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [],
   "source": [
    "df.to_csv('train_data.csv', index=False)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([<class 'str'>], dtype=object)"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df['title'].apply(type).unique()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.6"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}