--- library_name: transformers license: apache-2.0 base_model: CGCTG/orientation_resnet-50 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: orientation_resnet-50 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7597684515195369 --- # orientation_resnet-50 This model is a fine-tuned version of [CGCTG/orientation_resnet-50](https://huggingface.co/CGCTG/orientation_resnet-50) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.5106 - Accuracy: 0.7598 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:------:|:----:|:---------------:|:--------:| | 0.7836 | 1.0 | 87 | 1.2301 | 0.4986 | | 0.6808 | 2.0 | 174 | 0.6659 | 0.6382 | | 0.5641 | 2.9711 | 258 | 0.5106 | 0.7598 | ### Framework versions - Transformers 4.48.0 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0