CharlesCGCTG commited on
Commit
71c3246
·
verified ·
1 Parent(s): aefcee6

End of training

Browse files
Files changed (1) hide show
  1. README.md +7 -5
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.48552821997105644
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -33,8 +33,8 @@ should probably proofread and complete it, then remove this comment. -->
33
 
34
  This model is a fine-tuned version of [CGCTG/orientation_resnet-50](https://huggingface.co/CGCTG/orientation_resnet-50) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
- - Loss: 0.8638
37
- - Accuracy: 0.4855
38
 
39
  ## Model description
40
 
@@ -62,14 +62,16 @@ The following hyperparameters were used during training:
62
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
- - num_epochs: 1
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
  |:-------------:|:------:|:----:|:---------------:|:--------:|
72
- | 0.8151 | 0.9942 | 86 | 0.8638 | 0.4855 |
 
 
73
 
74
 
75
  ### Framework versions
 
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
+ value: 0.7597684515195369
27
  ---
28
 
29
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
33
 
34
  This model is a fine-tuned version of [CGCTG/orientation_resnet-50](https://huggingface.co/CGCTG/orientation_resnet-50) on the imagefolder dataset.
35
  It achieves the following results on the evaluation set:
36
+ - Loss: 0.5106
37
+ - Accuracy: 0.7598
38
 
39
  ## Model description
40
 
 
62
  - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
63
  - lr_scheduler_type: linear
64
  - lr_scheduler_warmup_ratio: 0.1
65
+ - num_epochs: 3
66
  - mixed_precision_training: Native AMP
67
 
68
  ### Training results
69
 
70
  | Training Loss | Epoch | Step | Validation Loss | Accuracy |
71
  |:-------------:|:------:|:----:|:---------------:|:--------:|
72
+ | 0.7836 | 1.0 | 87 | 1.2301 | 0.4986 |
73
+ | 0.6808 | 2.0 | 174 | 0.6659 | 0.6382 |
74
+ | 0.5641 | 2.9711 | 258 | 0.5106 | 0.7598 |
75
 
76
 
77
  ### Framework versions