Token Classification
Transformers
Safetensors
French
deberta-v2
Inference Endpoints
bourdoiscatie's picture
Update README.md
36a7175 verified
|
raw
history blame
2.53 kB
---
library_name: transformers
license: mit
base_model: almanach/camembertav2-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: camembertav2-base-frenchNER_3entities
results: []
---
```
{'LOC': {'precision': 0.9341895320551385,
'recall': 0.9516260108445131,
'f1': 0.9428271615530316,
'number': 75061},
'O': {'precision': 0.9953844747581743,
'recall': 0.9930766705362066,
'f1': 0.9942292334305959,
'number': 932066},
'ORG': {'precision': 0.8804077936494026,
'recall': 0.8825734282116606,
'f1': 0.8814892808048901,
'number': 34149},
'PER': {'precision': 0.9657491578607356,
'recall': 0.973339689331225,
'f1': 0.9695295670905427,
'number': 86008},
'overall_precision': 0.985463290528385,
'overall_recall': 0.985463290528385,
'overall_f1': 0.985463290528385,
'overall_accuracy': 0.985463290528385}
```
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# camembertav2-base-frenchNER_3entities
This model is a fine-tuned version of [almanach/camembertav2-base](https://huggingface.co/almanach/camembertav2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0880
- Precision: 0.9859
- Recall: 0.9859
- F1: 0.9859
- Accuracy: 0.9859
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0335 | 1.0 | 43650 | 0.0854 | 0.9833 | 0.9833 | 0.9833 | 0.9833 |
| 0.0169 | 2.0 | 87300 | 0.0821 | 0.9854 | 0.9854 | 0.9854 | 0.9854 |
| 0.0103 | 3.0 | 130950 | 0.0880 | 0.9859 | 0.9859 | 0.9859 | 0.9859 |
### Framework versions
- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1