Token Classification
Transformers
Safetensors
French
deberta-v2
Inference Endpoints
File size: 2,531 Bytes
7b69bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36a7175
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b69bd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
---
library_name: transformers
license: mit
base_model: almanach/camembertav2-base
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: camembertav2-base-frenchNER_3entities
  results: []
---

```
{'LOC': {'precision': 0.9341895320551385,
  'recall': 0.9516260108445131,
  'f1': 0.9428271615530316,
  'number': 75061},
 'O': {'precision': 0.9953844747581743,
  'recall': 0.9930766705362066,
  'f1': 0.9942292334305959,
  'number': 932066},
 'ORG': {'precision': 0.8804077936494026,
  'recall': 0.8825734282116606,
  'f1': 0.8814892808048901,
  'number': 34149},
 'PER': {'precision': 0.9657491578607356,
  'recall': 0.973339689331225,
  'f1': 0.9695295670905427,
  'number': 86008},
 'overall_precision': 0.985463290528385,
 'overall_recall': 0.985463290528385,
 'overall_f1': 0.985463290528385,
 'overall_accuracy': 0.985463290528385}
```
 
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# camembertav2-base-frenchNER_3entities

This model is a fine-tuned version of [almanach/camembertav2-base](https://huggingface.co/almanach/camembertav2-base) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0880
- Precision: 0.9859
- Recall: 0.9859
- F1: 0.9859
- Accuracy: 0.9859

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Precision | Recall | F1     | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:---------:|:------:|:------:|:--------:|
| 0.0335        | 1.0   | 43650  | 0.0854          | 0.9833    | 0.9833 | 0.9833 | 0.9833   |
| 0.0169        | 2.0   | 87300  | 0.0821          | 0.9854    | 0.9854 | 0.9854 | 0.9854   |
| 0.0103        | 3.0   | 130950 | 0.0880          | 0.9859    | 0.9859 | 0.9859 | 0.9859   |


### Framework versions

- Transformers 4.46.1
- Pytorch 2.4.0+cu121
- Datasets 2.21.0
- Tokenizers 0.20.1