Upload 13 files
Browse files- .gitattributes +1 -0
- rep_speech_model/1_Pooling/config.json +10 -0
- rep_speech_model/README.md +754 -0
- rep_speech_model/config.json +28 -0
- rep_speech_model/config_sentence_transformers.json +10 -0
- rep_speech_model/config_setfit.json +7 -0
- rep_speech_model/model.safetensors +3 -0
- rep_speech_model/model_head.pkl +3 -0
- rep_speech_model/modules.json +20 -0
- rep_speech_model/sentence_bert_config.json +4 -0
- rep_speech_model/special_tokens_map.json +51 -0
- rep_speech_model/tokenizer.json +3 -0
- rep_speech_model/tokenizer_config.json +61 -0
- training-results.md +540 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
rep_speech_model/tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
rep_speech_model/1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 1024,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
rep_speech_model/README.md
ADDED
@@ -0,0 +1,754 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: intfloat/multilingual-e5-large
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
pipeline_tag: text-classification
|
10 |
+
tags:
|
11 |
+
- setfit
|
12 |
+
- sentence-transformers
|
13 |
+
- text-classification
|
14 |
+
- generated_from_setfit_trainer
|
15 |
+
widget:
|
16 |
+
- text: 'men det kan så åbne nogle nye
|
17 |
+
|
18 |
+
|
19 |
+
'
|
20 |
+
- text: 'som jeg siger, der jo en grund til at jeg har fået et
|
21 |
+
|
22 |
+
handicapskilt og sådan'
|
23 |
+
- text: 'meget, ellers har jeg overholdt alt.
|
24 |
+
|
25 |
+
|
26 |
+
'
|
27 |
+
- text: 'sige det er 15 timer, du får betalte timer, jamen det er også en start,
|
28 |
+
|
29 |
+
'
|
30 |
+
- text: og jo det er nok rigtigt, det er sådan, jeg skal gøre det
|
31 |
+
inference: true
|
32 |
+
model-index:
|
33 |
+
- name: SetFit with intfloat/multilingual-e5-large
|
34 |
+
results:
|
35 |
+
- task:
|
36 |
+
type: text-classification
|
37 |
+
name: Text Classification
|
38 |
+
dataset:
|
39 |
+
name: Unknown
|
40 |
+
type: unknown
|
41 |
+
split: test
|
42 |
+
metrics:
|
43 |
+
- type: accuracy
|
44 |
+
value: 0.9724770642201835
|
45 |
+
name: Accuracy
|
46 |
+
- type: precision
|
47 |
+
value: 0.9557522123893806
|
48 |
+
name: Precision
|
49 |
+
- type: recall
|
50 |
+
value: 0.9908256880733946
|
51 |
+
name: Recall
|
52 |
+
- type: f1
|
53 |
+
value: 0.972972972972973
|
54 |
+
name: F1
|
55 |
+
---
|
56 |
+
|
57 |
+
# SetFit with intfloat/multilingual-e5-large
|
58 |
+
|
59 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
60 |
+
|
61 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
62 |
+
|
63 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
64 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
65 |
+
|
66 |
+
## Model Details
|
67 |
+
|
68 |
+
### Model Description
|
69 |
+
- **Model Type:** SetFit
|
70 |
+
- **Sentence Transformer body:** [intfloat/multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large)
|
71 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
72 |
+
- **Maximum Sequence Length:** 512 tokens
|
73 |
+
- **Number of Classes:** 2 classes
|
74 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
75 |
+
<!-- - **Language:** Unknown -->
|
76 |
+
<!-- - **License:** Unknown -->
|
77 |
+
|
78 |
+
### Model Sources
|
79 |
+
|
80 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
81 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
82 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
83 |
+
|
84 |
+
### Model Labels
|
85 |
+
| Label | Examples |
|
86 |
+
|:--------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
87 |
+
| reported speech | <ul><li>'der fortalte jeg dig alt det der om ret og pligt '</li><li>'Så havde vi de der snakke om, at du ligesom selv fik lov at styre dit\nNem-ID.'</li><li>'Amina sagde at min\ndumme mor havde ringet'</li></ul> |
|
88 |
+
| not reported speech | <ul><li>'sag. '</li><li>'du klage over ik Lykke?\n\n'</li><li>'S: nej. '</li></ul> |
|
89 |
+
|
90 |
+
## Evaluation
|
91 |
+
|
92 |
+
### Metrics
|
93 |
+
| Label | Accuracy | Precision | Recall | F1 |
|
94 |
+
|:--------|:---------|:----------|:-------|:-------|
|
95 |
+
| **all** | 0.9725 | 0.9558 | 0.9908 | 0.9730 |
|
96 |
+
|
97 |
+
## Uses
|
98 |
+
|
99 |
+
### Direct Use for Inference
|
100 |
+
|
101 |
+
First install the SetFit library:
|
102 |
+
|
103 |
+
```bash
|
104 |
+
pip install setfit
|
105 |
+
```
|
106 |
+
|
107 |
+
Then you can load this model and run inference.
|
108 |
+
|
109 |
+
```python
|
110 |
+
from setfit import SetFitModel
|
111 |
+
|
112 |
+
# Download from the 🤗 Hub
|
113 |
+
model = SetFitModel.from_pretrained("setfit_model_id")
|
114 |
+
# Run inference
|
115 |
+
preds = model("men det kan så åbne nogle nye
|
116 |
+
|
117 |
+
")
|
118 |
+
```
|
119 |
+
|
120 |
+
<!--
|
121 |
+
### Downstream Use
|
122 |
+
|
123 |
+
*List how someone could finetune this model on their own dataset.*
|
124 |
+
-->
|
125 |
+
|
126 |
+
<!--
|
127 |
+
### Out-of-Scope Use
|
128 |
+
|
129 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
130 |
+
-->
|
131 |
+
|
132 |
+
<!--
|
133 |
+
## Bias, Risks and Limitations
|
134 |
+
|
135 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
136 |
+
-->
|
137 |
+
|
138 |
+
<!--
|
139 |
+
### Recommendations
|
140 |
+
|
141 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
142 |
+
-->
|
143 |
+
|
144 |
+
## Training Details
|
145 |
+
|
146 |
+
### Training Set Metrics
|
147 |
+
| Training set | Min | Median | Max |
|
148 |
+
|:-------------|:----|:--------|:----|
|
149 |
+
| Word count | 1 | 19.1755 | 196 |
|
150 |
+
|
151 |
+
| Label | Training Sample Count |
|
152 |
+
|:--------------------|:----------------------|
|
153 |
+
| not reported speech | 265 |
|
154 |
+
| reported speech | 265 |
|
155 |
+
|
156 |
+
### Training Hyperparameters
|
157 |
+
- batch_size: (32, 32)
|
158 |
+
- num_epochs: (6, 6)
|
159 |
+
- max_steps: -1
|
160 |
+
- sampling_strategy: oversampling
|
161 |
+
- body_learning_rate: (1.0770502781075495e-06, 1.0770502781075495e-06)
|
162 |
+
- head_learning_rate: 0.01
|
163 |
+
- loss: CosineSimilarityLoss
|
164 |
+
- distance_metric: cosine_distance
|
165 |
+
- margin: 0.25
|
166 |
+
- end_to_end: False
|
167 |
+
- use_amp: False
|
168 |
+
- warmup_proportion: 0.1
|
169 |
+
- seed: 42
|
170 |
+
- eval_max_steps: -1
|
171 |
+
- load_best_model_at_end: True
|
172 |
+
|
173 |
+
### Training Results
|
174 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
175 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
176 |
+
| 0.0002 | 1 | 0.3495 | - |
|
177 |
+
| 0.0113 | 50 | 0.3524 | - |
|
178 |
+
| 0.0227 | 100 | 0.3496 | - |
|
179 |
+
| 0.0340 | 150 | 0.3464 | - |
|
180 |
+
| 0.0454 | 200 | 0.3419 | - |
|
181 |
+
| 0.0567 | 250 | 0.328 | - |
|
182 |
+
| 0.0681 | 300 | 0.3166 | - |
|
183 |
+
| 0.0794 | 350 | 0.3012 | - |
|
184 |
+
| 0.0908 | 400 | 0.277 | - |
|
185 |
+
| 0.1021 | 450 | 0.259 | - |
|
186 |
+
| 0.1135 | 500 | 0.2568 | - |
|
187 |
+
| 0.1248 | 550 | 0.2483 | - |
|
188 |
+
| 0.1362 | 600 | 0.2457 | - |
|
189 |
+
| 0.1475 | 650 | 0.2263 | - |
|
190 |
+
| 0.1589 | 700 | 0.2361 | - |
|
191 |
+
| 0.1702 | 750 | 0.2108 | - |
|
192 |
+
| 0.1816 | 800 | 0.2025 | - |
|
193 |
+
| 0.1929 | 850 | 0.1881 | - |
|
194 |
+
| 0.2043 | 900 | 0.1559 | - |
|
195 |
+
| 0.2156 | 950 | 0.1055 | - |
|
196 |
+
| 0.2270 | 1000 | 0.0693 | - |
|
197 |
+
| 0.2383 | 1050 | 0.0332 | - |
|
198 |
+
| 0.2497 | 1100 | 0.0287 | - |
|
199 |
+
| 0.2610 | 1150 | 0.0185 | - |
|
200 |
+
| 0.2724 | 1200 | 0.0421 | - |
|
201 |
+
| 0.2837 | 1250 | 0.0087 | - |
|
202 |
+
| 0.2951 | 1300 | 0.0233 | - |
|
203 |
+
| 0.3064 | 1350 | 0.0083 | - |
|
204 |
+
| 0.3177 | 1400 | 0.0043 | - |
|
205 |
+
| 0.3291 | 1450 | 0.0037 | - |
|
206 |
+
| 0.3404 | 1500 | 0.0033 | - |
|
207 |
+
| 0.3518 | 1550 | 0.0019 | - |
|
208 |
+
| 0.3631 | 1600 | 0.0016 | - |
|
209 |
+
| 0.3745 | 1650 | 0.0012 | - |
|
210 |
+
| 0.3858 | 1700 | 0.002 | - |
|
211 |
+
| 0.3972 | 1750 | 0.0014 | - |
|
212 |
+
| 0.4085 | 1800 | 0.0012 | - |
|
213 |
+
| 0.4199 | 1850 | 0.001 | - |
|
214 |
+
| 0.4312 | 1900 | 0.001 | - |
|
215 |
+
| 0.4426 | 1950 | 0.0037 | - |
|
216 |
+
| 0.4539 | 2000 | 0.0006 | - |
|
217 |
+
| 0.4653 | 2050 | 0.0009 | - |
|
218 |
+
| 0.4766 | 2100 | 0.001 | - |
|
219 |
+
| 0.4880 | 2150 | 0.0006 | - |
|
220 |
+
| 0.4993 | 2200 | 0.0007 | - |
|
221 |
+
| 0.5107 | 2250 | 0.0005 | - |
|
222 |
+
| 0.5220 | 2300 | 0.001 | - |
|
223 |
+
| 0.5334 | 2350 | 0.0006 | - |
|
224 |
+
| 0.5447 | 2400 | 0.0004 | - |
|
225 |
+
| 0.5561 | 2450 | 0.0003 | - |
|
226 |
+
| 0.5674 | 2500 | 0.0004 | - |
|
227 |
+
| 0.5788 | 2550 | 0.0005 | - |
|
228 |
+
| 0.5901 | 2600 | 0.0003 | - |
|
229 |
+
| 0.6015 | 2650 | 0.0003 | - |
|
230 |
+
| 0.6128 | 2700 | 0.0003 | - |
|
231 |
+
| 0.6241 | 2750 | 0.0003 | - |
|
232 |
+
| 0.6355 | 2800 | 0.0004 | - |
|
233 |
+
| 0.6468 | 2850 | 0.0003 | - |
|
234 |
+
| 0.6582 | 2900 | 0.0002 | - |
|
235 |
+
| 0.6695 | 2950 | 0.0003 | - |
|
236 |
+
| 0.6809 | 3000 | 0.0003 | - |
|
237 |
+
| 0.6922 | 3050 | 0.0003 | - |
|
238 |
+
| 0.7036 | 3100 | 0.0003 | - |
|
239 |
+
| 0.7149 | 3150 | 0.0002 | - |
|
240 |
+
| 0.7263 | 3200 | 0.0003 | - |
|
241 |
+
| 0.7376 | 3250 | 0.0001 | - |
|
242 |
+
| 0.7490 | 3300 | 0.0002 | - |
|
243 |
+
| 0.7603 | 3350 | 0.0002 | - |
|
244 |
+
| 0.7717 | 3400 | 0.0002 | - |
|
245 |
+
| 0.7830 | 3450 | 0.0002 | - |
|
246 |
+
| 0.7944 | 3500 | 0.0002 | - |
|
247 |
+
| 0.8057 | 3550 | 0.0002 | - |
|
248 |
+
| 0.8171 | 3600 | 0.0002 | - |
|
249 |
+
| 0.8284 | 3650 | 0.0002 | - |
|
250 |
+
| 0.8398 | 3700 | 0.0003 | - |
|
251 |
+
| 0.8511 | 3750 | 0.0002 | - |
|
252 |
+
| 0.8625 | 3800 | 0.0002 | - |
|
253 |
+
| 0.8738 | 3850 | 0.0002 | - |
|
254 |
+
| 0.8852 | 3900 | 0.0002 | - |
|
255 |
+
| 0.8965 | 3950 | 0.0002 | - |
|
256 |
+
| 0.9079 | 4000 | 0.0001 | - |
|
257 |
+
| 0.9192 | 4050 | 0.0002 | - |
|
258 |
+
| 0.9305 | 4100 | 0.0002 | - |
|
259 |
+
| 0.9419 | 4150 | 0.0001 | - |
|
260 |
+
| 0.9532 | 4200 | 0.0001 | - |
|
261 |
+
| 0.9646 | 4250 | 0.0001 | - |
|
262 |
+
| 0.9759 | 4300 | 0.0001 | - |
|
263 |
+
| 0.9873 | 4350 | 0.0002 | - |
|
264 |
+
| 0.9986 | 4400 | 0.0002 | - |
|
265 |
+
| 1.0 | 4406 | - | 0.0601 |
|
266 |
+
| 1.0100 | 4450 | 0.0001 | - |
|
267 |
+
| 1.0213 | 4500 | 0.0001 | - |
|
268 |
+
| 1.0327 | 4550 | 0.0001 | - |
|
269 |
+
| 1.0440 | 4600 | 0.0001 | - |
|
270 |
+
| 1.0554 | 4650 | 0.0001 | - |
|
271 |
+
| 1.0667 | 4700 | 0.0001 | - |
|
272 |
+
| 1.0781 | 4750 | 0.0001 | - |
|
273 |
+
| 1.0894 | 4800 | 0.0001 | - |
|
274 |
+
| 1.1008 | 4850 | 0.0001 | - |
|
275 |
+
| 1.1121 | 4900 | 0.0001 | - |
|
276 |
+
| 1.1235 | 4950 | 0.0001 | - |
|
277 |
+
| 1.1348 | 5000 | 0.0001 | - |
|
278 |
+
| 1.1462 | 5050 | 0.0002 | - |
|
279 |
+
| 1.1575 | 5100 | 0.0001 | - |
|
280 |
+
| 1.1689 | 5150 | 0.0001 | - |
|
281 |
+
| 1.1802 | 5200 | 0.0001 | - |
|
282 |
+
| 1.1916 | 5250 | 0.0001 | - |
|
283 |
+
| 1.2029 | 5300 | 0.0001 | - |
|
284 |
+
| 1.2143 | 5350 | 0.0001 | - |
|
285 |
+
| 1.2256 | 5400 | 0.0001 | - |
|
286 |
+
| 1.2369 | 5450 | 0.0001 | - |
|
287 |
+
| 1.2483 | 5500 | 0.0001 | - |
|
288 |
+
| 1.2596 | 5550 | 0.0001 | - |
|
289 |
+
| 1.2710 | 5600 | 0.0001 | - |
|
290 |
+
| 1.2823 | 5650 | 0.0001 | - |
|
291 |
+
| 1.2937 | 5700 | 0.0001 | - |
|
292 |
+
| 1.3050 | 5750 | 0.0001 | - |
|
293 |
+
| 1.3164 | 5800 | 0.0001 | - |
|
294 |
+
| 1.3277 | 5850 | 0.0001 | - |
|
295 |
+
| 1.3391 | 5900 | 0.0001 | - |
|
296 |
+
| 1.3504 | 5950 | 0.0001 | - |
|
297 |
+
| 1.3618 | 6000 | 0.0001 | - |
|
298 |
+
| 1.3731 | 6050 | 0.0001 | - |
|
299 |
+
| 1.3845 | 6100 | 0.0001 | - |
|
300 |
+
| 1.3958 | 6150 | 0.0001 | - |
|
301 |
+
| 1.4072 | 6200 | 0.0001 | - |
|
302 |
+
| 1.4185 | 6250 | 0.0001 | - |
|
303 |
+
| 1.4299 | 6300 | 0.0001 | - |
|
304 |
+
| 1.4412 | 6350 | 0.0001 | - |
|
305 |
+
| 1.4526 | 6400 | 0.0001 | - |
|
306 |
+
| 1.4639 | 6450 | 0.0 | - |
|
307 |
+
| 1.4753 | 6500 | 0.0001 | - |
|
308 |
+
| 1.4866 | 6550 | 0.0011 | - |
|
309 |
+
| 1.4980 | 6600 | 0.0001 | - |
|
310 |
+
| 1.5093 | 6650 | 0.0001 | - |
|
311 |
+
| 1.5207 | 6700 | 0.0 | - |
|
312 |
+
| 1.5320 | 6750 | 0.0 | - |
|
313 |
+
| 1.5433 | 6800 | 0.0001 | - |
|
314 |
+
| 1.5547 | 6850 | 0.0001 | - |
|
315 |
+
| 1.5660 | 6900 | 0.0001 | - |
|
316 |
+
| 1.5774 | 6950 | 0.0001 | - |
|
317 |
+
| 1.5887 | 7000 | 0.0001 | - |
|
318 |
+
| 1.6001 | 7050 | 0.0001 | - |
|
319 |
+
| 1.6114 | 7100 | 0.0001 | - |
|
320 |
+
| 1.6228 | 7150 | 0.0 | - |
|
321 |
+
| 1.6341 | 7200 | 0.0 | - |
|
322 |
+
| 1.6455 | 7250 | 0.0001 | - |
|
323 |
+
| 1.6568 | 7300 | 0.0001 | - |
|
324 |
+
| 1.6682 | 7350 | 0.0001 | - |
|
325 |
+
| 1.6795 | 7400 | 0.0001 | - |
|
326 |
+
| 1.6909 | 7450 | 0.0 | - |
|
327 |
+
| 1.7022 | 7500 | 0.0001 | - |
|
328 |
+
| 1.7136 | 7550 | 0.0001 | - |
|
329 |
+
| 1.7249 | 7600 | 0.0001 | - |
|
330 |
+
| 1.7363 | 7650 | 0.0 | - |
|
331 |
+
| 1.7476 | 7700 | 0.0 | - |
|
332 |
+
| 1.7590 | 7750 | 0.0 | - |
|
333 |
+
| 1.7703 | 7800 | 0.0001 | - |
|
334 |
+
| 1.7817 | 7850 | 0.0 | - |
|
335 |
+
| 1.7930 | 7900 | 0.0 | - |
|
336 |
+
| 1.8044 | 7950 | 0.0 | - |
|
337 |
+
| 1.8157 | 8000 | 0.0001 | - |
|
338 |
+
| 1.8271 | 8050 | 0.0 | - |
|
339 |
+
| 1.8384 | 8100 | 0.0 | - |
|
340 |
+
| 1.8498 | 8150 | 0.0001 | - |
|
341 |
+
| 1.8611 | 8200 | 0.0 | - |
|
342 |
+
| 1.8724 | 8250 | 0.0001 | - |
|
343 |
+
| 1.8838 | 8300 | 0.0 | - |
|
344 |
+
| 1.8951 | 8350 | 0.0001 | - |
|
345 |
+
| 1.9065 | 8400 | 0.0001 | - |
|
346 |
+
| 1.9178 | 8450 | 0.0001 | - |
|
347 |
+
| 1.9292 | 8500 | 0.0 | - |
|
348 |
+
| 1.9405 | 8550 | 0.0 | - |
|
349 |
+
| 1.9519 | 8600 | 0.0 | - |
|
350 |
+
| 1.9632 | 8650 | 0.0 | - |
|
351 |
+
| 1.9746 | 8700 | 0.0 | - |
|
352 |
+
| 1.9859 | 8750 | 0.0 | - |
|
353 |
+
| 1.9973 | 8800 | 0.0 | - |
|
354 |
+
| 2.0 | 8812 | - | 0.0549 |
|
355 |
+
| 2.0086 | 8850 | 0.0 | - |
|
356 |
+
| 2.0200 | 8900 | 0.0 | - |
|
357 |
+
| 2.0313 | 8950 | 0.0 | - |
|
358 |
+
| 2.0427 | 9000 | 0.0 | - |
|
359 |
+
| 2.0540 | 9050 | 0.0 | - |
|
360 |
+
| 2.0654 | 9100 | 0.0 | - |
|
361 |
+
| 2.0767 | 9150 | 0.0 | - |
|
362 |
+
| 2.0881 | 9200 | 0.0 | - |
|
363 |
+
| 2.0994 | 9250 | 0.0 | - |
|
364 |
+
| 2.1108 | 9300 | 0.0 | - |
|
365 |
+
| 2.1221 | 9350 | 0.0 | - |
|
366 |
+
| 2.1335 | 9400 | 0.0001 | - |
|
367 |
+
| 2.1448 | 9450 | 0.0 | - |
|
368 |
+
| 2.1562 | 9500 | 0.0 | - |
|
369 |
+
| 2.1675 | 9550 | 0.0 | - |
|
370 |
+
| 2.1788 | 9600 | 0.0 | - |
|
371 |
+
| 2.1902 | 9650 | 0.0 | - |
|
372 |
+
| 2.2015 | 9700 | 0.0 | - |
|
373 |
+
| 2.2129 | 9750 | 0.0 | - |
|
374 |
+
| 2.2242 | 9800 | 0.0 | - |
|
375 |
+
| 2.2356 | 9850 | 0.0 | - |
|
376 |
+
| 2.2469 | 9900 | 0.0 | - |
|
377 |
+
| 2.2583 | 9950 | 0.0 | - |
|
378 |
+
| 2.2696 | 10000 | 0.0 | - |
|
379 |
+
| 2.2810 | 10050 | 0.0 | - |
|
380 |
+
| 2.2923 | 10100 | 0.0 | - |
|
381 |
+
| 2.3037 | 10150 | 0.0 | - |
|
382 |
+
| 2.3150 | 10200 | 0.0 | - |
|
383 |
+
| 2.3264 | 10250 | 0.0 | - |
|
384 |
+
| 2.3377 | 10300 | 0.0 | - |
|
385 |
+
| 2.3491 | 10350 | 0.0 | - |
|
386 |
+
| 2.3604 | 10400 | 0.0 | - |
|
387 |
+
| 2.3718 | 10450 | 0.0001 | - |
|
388 |
+
| 2.3831 | 10500 | 0.0 | - |
|
389 |
+
| 2.3945 | 10550 | 0.0 | - |
|
390 |
+
| 2.4058 | 10600 | 0.0 | - |
|
391 |
+
| 2.4172 | 10650 | 0.0 | - |
|
392 |
+
| 2.4285 | 10700 | 0.0 | - |
|
393 |
+
| 2.4399 | 10750 | 0.0 | - |
|
394 |
+
| 2.4512 | 10800 | 0.0 | - |
|
395 |
+
| 2.4626 | 10850 | 0.0 | - |
|
396 |
+
| 2.4739 | 10900 | 0.0 | - |
|
397 |
+
| 2.4852 | 10950 | 0.0 | - |
|
398 |
+
| 2.4966 | 11000 | 0.0 | - |
|
399 |
+
| 2.5079 | 11050 | 0.0 | - |
|
400 |
+
| 2.5193 | 11100 | 0.0 | - |
|
401 |
+
| 2.5306 | 11150 | 0.0 | - |
|
402 |
+
| 2.5420 | 11200 | 0.0 | - |
|
403 |
+
| 2.5533 | 11250 | 0.0 | - |
|
404 |
+
| 2.5647 | 11300 | 0.0 | - |
|
405 |
+
| 2.5760 | 11350 | 0.0 | - |
|
406 |
+
| 2.5874 | 11400 | 0.0 | - |
|
407 |
+
| 2.5987 | 11450 | 0.0 | - |
|
408 |
+
| 2.6101 | 11500 | 0.0 | - |
|
409 |
+
| 2.6214 | 11550 | 0.0 | - |
|
410 |
+
| 2.6328 | 11600 | 0.0 | - |
|
411 |
+
| 2.6441 | 11650 | 0.0 | - |
|
412 |
+
| 2.6555 | 11700 | 0.0 | - |
|
413 |
+
| 2.6668 | 11750 | 0.0 | - |
|
414 |
+
| 2.6782 | 11800 | 0.0 | - |
|
415 |
+
| 2.6895 | 11850 | 0.0 | - |
|
416 |
+
| 2.7009 | 11900 | 0.0 | - |
|
417 |
+
| 2.7122 | 11950 | 0.0 | - |
|
418 |
+
| 2.7236 | 12000 | 0.0 | - |
|
419 |
+
| 2.7349 | 12050 | 0.0 | - |
|
420 |
+
| 2.7463 | 12100 | 0.0 | - |
|
421 |
+
| 2.7576 | 12150 | 0.0 | - |
|
422 |
+
| 2.7690 | 12200 | 0.0 | - |
|
423 |
+
| 2.7803 | 12250 | 0.0 | - |
|
424 |
+
| 2.7916 | 12300 | 0.0 | - |
|
425 |
+
| 2.8030 | 12350 | 0.0 | - |
|
426 |
+
| 2.8143 | 12400 | 0.0 | - |
|
427 |
+
| 2.8257 | 12450 | 0.0 | - |
|
428 |
+
| 2.8370 | 12500 | 0.0 | - |
|
429 |
+
| 2.8484 | 12550 | 0.0 | - |
|
430 |
+
| 2.8597 | 12600 | 0.0 | - |
|
431 |
+
| 2.8711 | 12650 | 0.0 | - |
|
432 |
+
| 2.8824 | 12700 | 0.0 | - |
|
433 |
+
| 2.8938 | 12750 | 0.0 | - |
|
434 |
+
| 2.9051 | 12800 | 0.0 | - |
|
435 |
+
| 2.9165 | 12850 | 0.0 | - |
|
436 |
+
| 2.9278 | 12900 | 0.0 | - |
|
437 |
+
| 2.9392 | 12950 | 0.0 | - |
|
438 |
+
| 2.9505 | 13000 | 0.0 | - |
|
439 |
+
| 2.9619 | 13050 | 0.0 | - |
|
440 |
+
| 2.9732 | 13100 | 0.0 | - |
|
441 |
+
| 2.9846 | 13150 | 0.0 | - |
|
442 |
+
| 2.9959 | 13200 | 0.0 | - |
|
443 |
+
| 3.0 | 13218 | - | 0.0469 |
|
444 |
+
| 3.0073 | 13250 | 0.0 | - |
|
445 |
+
| 3.0186 | 13300 | 0.0 | - |
|
446 |
+
| 3.0300 | 13350 | 0.0 | - |
|
447 |
+
| 3.0413 | 13400 | 0.0 | - |
|
448 |
+
| 3.0527 | 13450 | 0.0 | - |
|
449 |
+
| 3.0640 | 13500 | 0.0 | - |
|
450 |
+
| 3.0754 | 13550 | 0.0 | - |
|
451 |
+
| 3.0867 | 13600 | 0.0 | - |
|
452 |
+
| 3.0980 | 13650 | 0.0 | - |
|
453 |
+
| 3.1094 | 13700 | 0.0 | - |
|
454 |
+
| 3.1207 | 13750 | 0.0 | - |
|
455 |
+
| 3.1321 | 13800 | 0.0 | - |
|
456 |
+
| 3.1434 | 13850 | 0.0 | - |
|
457 |
+
| 3.1548 | 13900 | 0.0 | - |
|
458 |
+
| 3.1661 | 13950 | 0.0 | - |
|
459 |
+
| 3.1775 | 14000 | 0.0 | - |
|
460 |
+
| 3.1888 | 14050 | 0.0 | - |
|
461 |
+
| 3.2002 | 14100 | 0.0 | - |
|
462 |
+
| 3.2115 | 14150 | 0.0 | - |
|
463 |
+
| 3.2229 | 14200 | 0.0 | - |
|
464 |
+
| 3.2342 | 14250 | 0.0 | - |
|
465 |
+
| 3.2456 | 14300 | 0.0 | - |
|
466 |
+
| 3.2569 | 14350 | 0.0 | - |
|
467 |
+
| 3.2683 | 14400 | 0.0 | - |
|
468 |
+
| 3.2796 | 14450 | 0.0 | - |
|
469 |
+
| 3.2910 | 14500 | 0.0 | - |
|
470 |
+
| 3.3023 | 14550 | 0.0 | - |
|
471 |
+
| 3.3137 | 14600 | 0.0 | - |
|
472 |
+
| 3.3250 | 14650 | 0.0 | - |
|
473 |
+
| 3.3364 | 14700 | 0.0 | - |
|
474 |
+
| 3.3477 | 14750 | 0.0 | - |
|
475 |
+
| 3.3591 | 14800 | 0.0 | - |
|
476 |
+
| 3.3704 | 14850 | 0.0 | - |
|
477 |
+
| 3.3818 | 14900 | 0.0 | - |
|
478 |
+
| 3.3931 | 14950 | 0.0 | - |
|
479 |
+
| 3.4044 | 15000 | 0.0 | - |
|
480 |
+
| 3.4158 | 15050 | 0.0 | - |
|
481 |
+
| 3.4271 | 15100 | 0.0 | - |
|
482 |
+
| 3.4385 | 15150 | 0.0 | - |
|
483 |
+
| 3.4498 | 15200 | 0.0 | - |
|
484 |
+
| 3.4612 | 15250 | 0.0 | - |
|
485 |
+
| 3.4725 | 15300 | 0.0 | - |
|
486 |
+
| 3.4839 | 15350 | 0.0 | - |
|
487 |
+
| 3.4952 | 15400 | 0.0 | - |
|
488 |
+
| 3.5066 | 15450 | 0.0 | - |
|
489 |
+
| 3.5179 | 15500 | 0.0 | - |
|
490 |
+
| 3.5293 | 15550 | 0.0 | - |
|
491 |
+
| 3.5406 | 15600 | 0.0 | - |
|
492 |
+
| 3.5520 | 15650 | 0.0 | - |
|
493 |
+
| 3.5633 | 15700 | 0.0 | - |
|
494 |
+
| 3.5747 | 15750 | 0.0 | - |
|
495 |
+
| 3.5860 | 15800 | 0.0 | - |
|
496 |
+
| 3.5974 | 15850 | 0.0 | - |
|
497 |
+
| 3.6087 | 15900 | 0.0 | - |
|
498 |
+
| 3.6201 | 15950 | 0.0 | - |
|
499 |
+
| 3.6314 | 16000 | 0.0 | - |
|
500 |
+
| 3.6428 | 16050 | 0.0 | - |
|
501 |
+
| 3.6541 | 16100 | 0.0 | - |
|
502 |
+
| 3.6655 | 16150 | 0.0 | - |
|
503 |
+
| 3.6768 | 16200 | 0.0 | - |
|
504 |
+
| 3.6882 | 16250 | 0.0 | - |
|
505 |
+
| 3.6995 | 16300 | 0.0 | - |
|
506 |
+
| 3.7108 | 16350 | 0.0 | - |
|
507 |
+
| 3.7222 | 16400 | 0.0 | - |
|
508 |
+
| 3.7335 | 16450 | 0.0 | - |
|
509 |
+
| 3.7449 | 16500 | 0.0 | - |
|
510 |
+
| 3.7562 | 16550 | 0.0 | - |
|
511 |
+
| 3.7676 | 16600 | 0.0 | - |
|
512 |
+
| 3.7789 | 16650 | 0.0 | - |
|
513 |
+
| 3.7903 | 16700 | 0.0 | - |
|
514 |
+
| 3.8016 | 16750 | 0.0 | - |
|
515 |
+
| 3.8130 | 16800 | 0.0 | - |
|
516 |
+
| 3.8243 | 16850 | 0.0 | - |
|
517 |
+
| 3.8357 | 16900 | 0.0 | - |
|
518 |
+
| 3.8470 | 16950 | 0.0 | - |
|
519 |
+
| 3.8584 | 17000 | 0.0 | - |
|
520 |
+
| 3.8697 | 17050 | 0.0 | - |
|
521 |
+
| 3.8811 | 17100 | 0.0 | - |
|
522 |
+
| 3.8924 | 17150 | 0.0 | - |
|
523 |
+
| 3.9038 | 17200 | 0.0 | - |
|
524 |
+
| 3.9151 | 17250 | 0.0 | - |
|
525 |
+
| 3.9265 | 17300 | 0.0 | - |
|
526 |
+
| 3.9378 | 17350 | 0.0 | - |
|
527 |
+
| 3.9492 | 17400 | 0.0 | - |
|
528 |
+
| 3.9605 | 17450 | 0.0 | - |
|
529 |
+
| 3.9719 | 17500 | 0.0 | - |
|
530 |
+
| 3.9832 | 17550 | 0.0 | - |
|
531 |
+
| 3.9946 | 17600 | 0.0 | - |
|
532 |
+
| 4.0 | 17624 | - | 0.0404 |
|
533 |
+
| 4.0059 | 17650 | 0.0 | - |
|
534 |
+
| 4.0172 | 17700 | 0.0 | - |
|
535 |
+
| 4.0286 | 17750 | 0.0 | - |
|
536 |
+
| 4.0399 | 17800 | 0.0 | - |
|
537 |
+
| 4.0513 | 17850 | 0.0 | - |
|
538 |
+
| 4.0626 | 17900 | 0.0 | - |
|
539 |
+
| 4.0740 | 17950 | 0.0 | - |
|
540 |
+
| 4.0853 | 18000 | 0.0 | - |
|
541 |
+
| 4.0967 | 18050 | 0.0 | - |
|
542 |
+
| 4.1080 | 18100 | 0.0 | - |
|
543 |
+
| 4.1194 | 18150 | 0.0 | - |
|
544 |
+
| 4.1307 | 18200 | 0.0 | - |
|
545 |
+
| 4.1421 | 18250 | 0.0 | - |
|
546 |
+
| 4.1534 | 18300 | 0.0 | - |
|
547 |
+
| 4.1648 | 18350 | 0.0 | - |
|
548 |
+
| 4.1761 | 18400 | 0.0 | - |
|
549 |
+
| 4.1875 | 18450 | 0.0 | - |
|
550 |
+
| 4.1988 | 18500 | 0.0 | - |
|
551 |
+
| 4.2102 | 18550 | 0.0 | - |
|
552 |
+
| 4.2215 | 18600 | 0.0 | - |
|
553 |
+
| 4.2329 | 18650 | 0.0 | - |
|
554 |
+
| 4.2442 | 18700 | 0.0 | - |
|
555 |
+
| 4.2556 | 18750 | 0.0 | - |
|
556 |
+
| 4.2669 | 18800 | 0.0 | - |
|
557 |
+
| 4.2783 | 18850 | 0.0 | - |
|
558 |
+
| 4.2896 | 18900 | 0.0 | - |
|
559 |
+
| 4.3010 | 18950 | 0.0 | - |
|
560 |
+
| 4.3123 | 19000 | 0.0 | - |
|
561 |
+
| 4.3236 | 19050 | 0.0 | - |
|
562 |
+
| 4.3350 | 19100 | 0.0 | - |
|
563 |
+
| 4.3463 | 19150 | 0.0 | - |
|
564 |
+
| 4.3577 | 19200 | 0.0 | - |
|
565 |
+
| 4.3690 | 19250 | 0.0 | - |
|
566 |
+
| 4.3804 | 19300 | 0.0 | - |
|
567 |
+
| 4.3917 | 19350 | 0.0 | - |
|
568 |
+
| 4.4031 | 19400 | 0.0 | - |
|
569 |
+
| 4.4144 | 19450 | 0.0 | - |
|
570 |
+
| 4.4258 | 19500 | 0.0 | - |
|
571 |
+
| 4.4371 | 19550 | 0.0 | - |
|
572 |
+
| 4.4485 | 19600 | 0.0 | - |
|
573 |
+
| 4.4598 | 19650 | 0.0 | - |
|
574 |
+
| 4.4712 | 19700 | 0.0 | - |
|
575 |
+
| 4.4825 | 19750 | 0.0 | - |
|
576 |
+
| 4.4939 | 19800 | 0.0 | - |
|
577 |
+
| 4.5052 | 19850 | 0.0 | - |
|
578 |
+
| 4.5166 | 19900 | 0.0 | - |
|
579 |
+
| 4.5279 | 19950 | 0.0 | - |
|
580 |
+
| 4.5393 | 20000 | 0.0 | - |
|
581 |
+
| 4.5506 | 20050 | 0.0 | - |
|
582 |
+
| 4.5620 | 20100 | 0.0 | - |
|
583 |
+
| 4.5733 | 20150 | 0.0 | - |
|
584 |
+
| 4.5847 | 20200 | 0.0 | - |
|
585 |
+
| 4.5960 | 20250 | 0.0 | - |
|
586 |
+
| 4.6074 | 20300 | 0.0 | - |
|
587 |
+
| 4.6187 | 20350 | 0.0 | - |
|
588 |
+
| 4.6300 | 20400 | 0.0 | - |
|
589 |
+
| 4.6414 | 20450 | 0.0 | - |
|
590 |
+
| 4.6527 | 20500 | 0.0 | - |
|
591 |
+
| 4.6641 | 20550 | 0.0 | - |
|
592 |
+
| 4.6754 | 20600 | 0.0 | - |
|
593 |
+
| 4.6868 | 20650 | 0.0 | - |
|
594 |
+
| 4.6981 | 20700 | 0.0 | - |
|
595 |
+
| 4.7095 | 20750 | 0.0 | - |
|
596 |
+
| 4.7208 | 20800 | 0.0 | - |
|
597 |
+
| 4.7322 | 20850 | 0.0 | - |
|
598 |
+
| 4.7435 | 20900 | 0.0 | - |
|
599 |
+
| 4.7549 | 20950 | 0.0 | - |
|
600 |
+
| 4.7662 | 21000 | 0.0 | - |
|
601 |
+
| 4.7776 | 21050 | 0.0 | - |
|
602 |
+
| 4.7889 | 21100 | 0.0 | - |
|
603 |
+
| 4.8003 | 21150 | 0.0 | - |
|
604 |
+
| 4.8116 | 21200 | 0.0 | - |
|
605 |
+
| 4.8230 | 21250 | 0.0 | - |
|
606 |
+
| 4.8343 | 21300 | 0.0 | - |
|
607 |
+
| 4.8457 | 21350 | 0.0 | - |
|
608 |
+
| 4.8570 | 21400 | 0.0 | - |
|
609 |
+
| 4.8684 | 21450 | 0.0 | - |
|
610 |
+
| 4.8797 | 21500 | 0.0 | - |
|
611 |
+
| 4.8911 | 21550 | 0.0 | - |
|
612 |
+
| 4.9024 | 21600 | 0.0 | - |
|
613 |
+
| 4.9138 | 21650 | 0.0 | - |
|
614 |
+
| 4.9251 | 21700 | 0.0 | - |
|
615 |
+
| 4.9365 | 21750 | 0.0 | - |
|
616 |
+
| 4.9478 | 21800 | 0.0 | - |
|
617 |
+
| 4.9591 | 21850 | 0.0 | - |
|
618 |
+
| 4.9705 | 21900 | 0.0 | - |
|
619 |
+
| 4.9818 | 21950 | 0.0 | - |
|
620 |
+
| 4.9932 | 22000 | 0.0 | - |
|
621 |
+
| **5.0** | **22030** | **-** | **0.038** |
|
622 |
+
| 5.0045 | 22050 | 0.0 | - |
|
623 |
+
| 5.0159 | 22100 | 0.0 | - |
|
624 |
+
| 5.0272 | 22150 | 0.0 | - |
|
625 |
+
| 5.0386 | 22200 | 0.0 | - |
|
626 |
+
| 5.0499 | 22250 | 0.0 | - |
|
627 |
+
| 5.0613 | 22300 | 0.0 | - |
|
628 |
+
| 5.0726 | 22350 | 0.0 | - |
|
629 |
+
| 5.0840 | 22400 | 0.0 | - |
|
630 |
+
| 5.0953 | 22450 | 0.0 | - |
|
631 |
+
| 5.1067 | 22500 | 0.0 | - |
|
632 |
+
| 5.1180 | 22550 | 0.0 | - |
|
633 |
+
| 5.1294 | 22600 | 0.0 | - |
|
634 |
+
| 5.1407 | 22650 | 0.0 | - |
|
635 |
+
| 5.1521 | 22700 | 0.0 | - |
|
636 |
+
| 5.1634 | 22750 | 0.0 | - |
|
637 |
+
| 5.1748 | 22800 | 0.0 | - |
|
638 |
+
| 5.1861 | 22850 | 0.0 | - |
|
639 |
+
| 5.1975 | 22900 | 0.0 | - |
|
640 |
+
| 5.2088 | 22950 | 0.0 | - |
|
641 |
+
| 5.2202 | 23000 | 0.0 | - |
|
642 |
+
| 5.2315 | 23050 | 0.0 | - |
|
643 |
+
| 5.2429 | 23100 | 0.0 | - |
|
644 |
+
| 5.2542 | 23150 | 0.0 | - |
|
645 |
+
| 5.2655 | 23200 | 0.0 | - |
|
646 |
+
| 5.2769 | 23250 | 0.0 | - |
|
647 |
+
| 5.2882 | 23300 | 0.0 | - |
|
648 |
+
| 5.2996 | 23350 | 0.0 | - |
|
649 |
+
| 5.3109 | 23400 | 0.0 | - |
|
650 |
+
| 5.3223 | 23450 | 0.0 | - |
|
651 |
+
| 5.3336 | 23500 | 0.0 | - |
|
652 |
+
| 5.3450 | 23550 | 0.0 | - |
|
653 |
+
| 5.3563 | 23600 | 0.0 | - |
|
654 |
+
| 5.3677 | 23650 | 0.0 | - |
|
655 |
+
| 5.3790 | 23700 | 0.0 | - |
|
656 |
+
| 5.3904 | 23750 | 0.0 | - |
|
657 |
+
| 5.4017 | 23800 | 0.0 | - |
|
658 |
+
| 5.4131 | 23850 | 0.0 | - |
|
659 |
+
| 5.4244 | 23900 | 0.0 | - |
|
660 |
+
| 5.4358 | 23950 | 0.0 | - |
|
661 |
+
| 5.4471 | 24000 | 0.0 | - |
|
662 |
+
| 5.4585 | 24050 | 0.0 | - |
|
663 |
+
| 5.4698 | 24100 | 0.0 | - |
|
664 |
+
| 5.4812 | 24150 | 0.0 | - |
|
665 |
+
| 5.4925 | 24200 | 0.0 | - |
|
666 |
+
| 5.5039 | 24250 | 0.0 | - |
|
667 |
+
| 5.5152 | 24300 | 0.0 | - |
|
668 |
+
| 5.5266 | 24350 | 0.0 | - |
|
669 |
+
| 5.5379 | 24400 | 0.0 | - |
|
670 |
+
| 5.5493 | 24450 | 0.0 | - |
|
671 |
+
| 5.5606 | 24500 | 0.0 | - |
|
672 |
+
| 5.5719 | 24550 | 0.0 | - |
|
673 |
+
| 5.5833 | 24600 | 0.0 | - |
|
674 |
+
| 5.5946 | 24650 | 0.0 | - |
|
675 |
+
| 5.6060 | 24700 | 0.0 | - |
|
676 |
+
| 5.6173 | 24750 | 0.0 | - |
|
677 |
+
| 5.6287 | 24800 | 0.0 | - |
|
678 |
+
| 5.6400 | 24850 | 0.0 | - |
|
679 |
+
| 5.6514 | 24900 | 0.0 | - |
|
680 |
+
| 5.6627 | 24950 | 0.0 | - |
|
681 |
+
| 5.6741 | 25000 | 0.0 | - |
|
682 |
+
| 5.6854 | 25050 | 0.0 | - |
|
683 |
+
| 5.6968 | 25100 | 0.0 | - |
|
684 |
+
| 5.7081 | 25150 | 0.0 | - |
|
685 |
+
| 5.7195 | 25200 | 0.0 | - |
|
686 |
+
| 5.7308 | 25250 | 0.0 | - |
|
687 |
+
| 5.7422 | 25300 | 0.0 | - |
|
688 |
+
| 5.7535 | 25350 | 0.0 | - |
|
689 |
+
| 5.7649 | 25400 | 0.0 | - |
|
690 |
+
| 5.7762 | 25450 | 0.0 | - |
|
691 |
+
| 5.7876 | 25500 | 0.0 | - |
|
692 |
+
| 5.7989 | 25550 | 0.0 | - |
|
693 |
+
| 5.8103 | 25600 | 0.0 | - |
|
694 |
+
| 5.8216 | 25650 | 0.0 | - |
|
695 |
+
| 5.8330 | 25700 | 0.0 | - |
|
696 |
+
| 5.8443 | 25750 | 0.0 | - |
|
697 |
+
| 5.8557 | 25800 | 0.0 | - |
|
698 |
+
| 5.8670 | 25850 | 0.0 | - |
|
699 |
+
| 5.8783 | 25900 | 0.0 | - |
|
700 |
+
| 5.8897 | 25950 | 0.0 | - |
|
701 |
+
| 5.9010 | 26000 | 0.0 | - |
|
702 |
+
| 5.9124 | 26050 | 0.0 | - |
|
703 |
+
| 5.9237 | 26100 | 0.0 | - |
|
704 |
+
| 5.9351 | 26150 | 0.0 | - |
|
705 |
+
| 5.9464 | 26200 | 0.0 | - |
|
706 |
+
| 5.9578 | 26250 | 0.0 | - |
|
707 |
+
| 5.9691 | 26300 | 0.0 | - |
|
708 |
+
| 5.9805 | 26350 | 0.0 | - |
|
709 |
+
| 5.9918 | 26400 | 0.0 | - |
|
710 |
+
| 6.0 | 26436 | - | 0.0382 |
|
711 |
+
|
712 |
+
* The bold row denotes the saved checkpoint.
|
713 |
+
### Framework Versions
|
714 |
+
- Python: 3.12.3
|
715 |
+
- SetFit: 1.0.3
|
716 |
+
- Sentence Transformers: 3.0.1
|
717 |
+
- Transformers: 4.39.0
|
718 |
+
- PyTorch: 2.4.1+cu121
|
719 |
+
- Datasets: 2.21.0
|
720 |
+
- Tokenizers: 0.15.2
|
721 |
+
|
722 |
+
## Citation
|
723 |
+
|
724 |
+
### BibTeX
|
725 |
+
```bibtex
|
726 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
727 |
+
doi = {10.48550/ARXIV.2209.11055},
|
728 |
+
url = {https://arxiv.org/abs/2209.11055},
|
729 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
730 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
731 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
732 |
+
publisher = {arXiv},
|
733 |
+
year = {2022},
|
734 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
735 |
+
}
|
736 |
+
```
|
737 |
+
|
738 |
+
<!--
|
739 |
+
## Glossary
|
740 |
+
|
741 |
+
*Clearly define terms in order to be accessible across audiences.*
|
742 |
+
-->
|
743 |
+
|
744 |
+
<!--
|
745 |
+
## Model Card Authors
|
746 |
+
|
747 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
748 |
+
-->
|
749 |
+
|
750 |
+
<!--
|
751 |
+
## Model Card Contact
|
752 |
+
|
753 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
754 |
+
-->
|
rep_speech_model/config.json
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "checkpoints/step_22030",
|
3 |
+
"architectures": [
|
4 |
+
"XLMRobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"hidden_act": "gelu",
|
11 |
+
"hidden_dropout_prob": 0.1,
|
12 |
+
"hidden_size": 1024,
|
13 |
+
"initializer_range": 0.02,
|
14 |
+
"intermediate_size": 4096,
|
15 |
+
"layer_norm_eps": 1e-05,
|
16 |
+
"max_position_embeddings": 514,
|
17 |
+
"model_type": "xlm-roberta",
|
18 |
+
"num_attention_heads": 16,
|
19 |
+
"num_hidden_layers": 24,
|
20 |
+
"output_past": true,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"torch_dtype": "float32",
|
24 |
+
"transformers_version": "4.39.0",
|
25 |
+
"type_vocab_size": 1,
|
26 |
+
"use_cache": true,
|
27 |
+
"vocab_size": 250002
|
28 |
+
}
|
rep_speech_model/config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.0.1",
|
4 |
+
"transformers": "4.39.0",
|
5 |
+
"pytorch": "2.4.1+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
rep_speech_model/config_setfit.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"normalize_embeddings": false,
|
3 |
+
"labels": [
|
4 |
+
"not reported speech",
|
5 |
+
"reported speech"
|
6 |
+
]
|
7 |
+
}
|
rep_speech_model/model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d0868c324e4d4e293fb536bce44b9dd512b832d348c8f05c3d1a1133ccac34f5
|
3 |
+
size 2239607176
|
rep_speech_model/model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a41b2e0d6572265716d1fb8346393cd1058b16f8c792792922e8faa213b00f02
|
3 |
+
size 9199
|
rep_speech_model/modules.json
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
},
|
14 |
+
{
|
15 |
+
"idx": 2,
|
16 |
+
"name": "2",
|
17 |
+
"path": "2_Normalize",
|
18 |
+
"type": "sentence_transformers.models.Normalize"
|
19 |
+
}
|
20 |
+
]
|
rep_speech_model/sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
rep_speech_model/special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<s>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "<s>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "</s>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "<mask>",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "</s>",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
rep_speech_model/tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1cc44ad7faaeec47241864835473fd5403f2da94673f3f764a77ebcb0a803ec
|
3 |
+
size 17083009
|
rep_speech_model/tokenizer_config.json
ADDED
@@ -0,0 +1,61 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<s>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<pad>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "</s>",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "<unk>",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"250001": {
|
36 |
+
"content": "<mask>",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "<s>",
|
45 |
+
"clean_up_tokenization_spaces": true,
|
46 |
+
"cls_token": "<s>",
|
47 |
+
"eos_token": "</s>",
|
48 |
+
"mask_token": "<mask>",
|
49 |
+
"max_length": 512,
|
50 |
+
"model_max_length": 512,
|
51 |
+
"pad_to_multiple_of": null,
|
52 |
+
"pad_token": "<pad>",
|
53 |
+
"pad_token_type_id": 0,
|
54 |
+
"padding_side": "right",
|
55 |
+
"sep_token": "</s>",
|
56 |
+
"stride": 0,
|
57 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
58 |
+
"truncation_side": "right",
|
59 |
+
"truncation_strategy": "longest_first",
|
60 |
+
"unk_token": "<unk>"
|
61 |
+
}
|
training-results.md
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
### Training Results
|
2 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
3 |
+
|:-------:|:---------:|:-------------:|:---------------:|
|
4 |
+
| 0.0002 | 1 | 0.3495 | - |
|
5 |
+
| 0.0113 | 50 | 0.3524 | - |
|
6 |
+
| 0.0227 | 100 | 0.3496 | - |
|
7 |
+
| 0.0340 | 150 | 0.3464 | - |
|
8 |
+
| 0.0454 | 200 | 0.3419 | - |
|
9 |
+
| 0.0567 | 250 | 0.328 | - |
|
10 |
+
| 0.0681 | 300 | 0.3166 | - |
|
11 |
+
| 0.0794 | 350 | 0.3012 | - |
|
12 |
+
| 0.0908 | 400 | 0.277 | - |
|
13 |
+
| 0.1021 | 450 | 0.259 | - |
|
14 |
+
| 0.1135 | 500 | 0.2568 | - |
|
15 |
+
| 0.1248 | 550 | 0.2483 | - |
|
16 |
+
| 0.1362 | 600 | 0.2457 | - |
|
17 |
+
| 0.1475 | 650 | 0.2263 | - |
|
18 |
+
| 0.1589 | 700 | 0.2361 | - |
|
19 |
+
| 0.1702 | 750 | 0.2108 | - |
|
20 |
+
| 0.1816 | 800 | 0.2025 | - |
|
21 |
+
| 0.1929 | 850 | 0.1881 | - |
|
22 |
+
| 0.2043 | 900 | 0.1559 | - |
|
23 |
+
| 0.2156 | 950 | 0.1055 | - |
|
24 |
+
| 0.2270 | 1000 | 0.0693 | - |
|
25 |
+
| 0.2383 | 1050 | 0.0332 | - |
|
26 |
+
| 0.2497 | 1100 | 0.0287 | - |
|
27 |
+
| 0.2610 | 1150 | 0.0185 | - |
|
28 |
+
| 0.2724 | 1200 | 0.0421 | - |
|
29 |
+
| 0.2837 | 1250 | 0.0087 | - |
|
30 |
+
| 0.2951 | 1300 | 0.0233 | - |
|
31 |
+
| 0.3064 | 1350 | 0.0083 | - |
|
32 |
+
| 0.3177 | 1400 | 0.0043 | - |
|
33 |
+
| 0.3291 | 1450 | 0.0037 | - |
|
34 |
+
| 0.3404 | 1500 | 0.0033 | - |
|
35 |
+
| 0.3518 | 1550 | 0.0019 | - |
|
36 |
+
| 0.3631 | 1600 | 0.0016 | - |
|
37 |
+
| 0.3745 | 1650 | 0.0012 | - |
|
38 |
+
| 0.3858 | 1700 | 0.002 | - |
|
39 |
+
| 0.3972 | 1750 | 0.0014 | - |
|
40 |
+
| 0.4085 | 1800 | 0.0012 | - |
|
41 |
+
| 0.4199 | 1850 | 0.001 | - |
|
42 |
+
| 0.4312 | 1900 | 0.001 | - |
|
43 |
+
| 0.4426 | 1950 | 0.0037 | - |
|
44 |
+
| 0.4539 | 2000 | 0.0006 | - |
|
45 |
+
| 0.4653 | 2050 | 0.0009 | - |
|
46 |
+
| 0.4766 | 2100 | 0.001 | - |
|
47 |
+
| 0.4880 | 2150 | 0.0006 | - |
|
48 |
+
| 0.4993 | 2200 | 0.0007 | - |
|
49 |
+
| 0.5107 | 2250 | 0.0005 | - |
|
50 |
+
| 0.5220 | 2300 | 0.001 | - |
|
51 |
+
| 0.5334 | 2350 | 0.0006 | - |
|
52 |
+
| 0.5447 | 2400 | 0.0004 | - |
|
53 |
+
| 0.5561 | 2450 | 0.0003 | - |
|
54 |
+
| 0.5674 | 2500 | 0.0004 | - |
|
55 |
+
| 0.5788 | 2550 | 0.0005 | - |
|
56 |
+
| 0.5901 | 2600 | 0.0003 | - |
|
57 |
+
| 0.6015 | 2650 | 0.0003 | - |
|
58 |
+
| 0.6128 | 2700 | 0.0003 | - |
|
59 |
+
| 0.6241 | 2750 | 0.0003 | - |
|
60 |
+
| 0.6355 | 2800 | 0.0004 | - |
|
61 |
+
| 0.6468 | 2850 | 0.0003 | - |
|
62 |
+
| 0.6582 | 2900 | 0.0002 | - |
|
63 |
+
| 0.6695 | 2950 | 0.0003 | - |
|
64 |
+
| 0.6809 | 3000 | 0.0003 | - |
|
65 |
+
| 0.6922 | 3050 | 0.0003 | - |
|
66 |
+
| 0.7036 | 3100 | 0.0003 | - |
|
67 |
+
| 0.7149 | 3150 | 0.0002 | - |
|
68 |
+
| 0.7263 | 3200 | 0.0003 | - |
|
69 |
+
| 0.7376 | 3250 | 0.0001 | - |
|
70 |
+
| 0.7490 | 3300 | 0.0002 | - |
|
71 |
+
| 0.7603 | 3350 | 0.0002 | - |
|
72 |
+
| 0.7717 | 3400 | 0.0002 | - |
|
73 |
+
| 0.7830 | 3450 | 0.0002 | - |
|
74 |
+
| 0.7944 | 3500 | 0.0002 | - |
|
75 |
+
| 0.8057 | 3550 | 0.0002 | - |
|
76 |
+
| 0.8171 | 3600 | 0.0002 | - |
|
77 |
+
| 0.8284 | 3650 | 0.0002 | - |
|
78 |
+
| 0.8398 | 3700 | 0.0003 | - |
|
79 |
+
| 0.8511 | 3750 | 0.0002 | - |
|
80 |
+
| 0.8625 | 3800 | 0.0002 | - |
|
81 |
+
| 0.8738 | 3850 | 0.0002 | - |
|
82 |
+
| 0.8852 | 3900 | 0.0002 | - |
|
83 |
+
| 0.8965 | 3950 | 0.0002 | - |
|
84 |
+
| 0.9079 | 4000 | 0.0001 | - |
|
85 |
+
| 0.9192 | 4050 | 0.0002 | - |
|
86 |
+
| 0.9305 | 4100 | 0.0002 | - |
|
87 |
+
| 0.9419 | 4150 | 0.0001 | - |
|
88 |
+
| 0.9532 | 4200 | 0.0001 | - |
|
89 |
+
| 0.9646 | 4250 | 0.0001 | - |
|
90 |
+
| 0.9759 | 4300 | 0.0001 | - |
|
91 |
+
| 0.9873 | 4350 | 0.0002 | - |
|
92 |
+
| 0.9986 | 4400 | 0.0002 | - |
|
93 |
+
| 1.0 | 4406 | - | 0.0601 |
|
94 |
+
| 1.0100 | 4450 | 0.0001 | - |
|
95 |
+
| 1.0213 | 4500 | 0.0001 | - |
|
96 |
+
| 1.0327 | 4550 | 0.0001 | - |
|
97 |
+
| 1.0440 | 4600 | 0.0001 | - |
|
98 |
+
| 1.0554 | 4650 | 0.0001 | - |
|
99 |
+
| 1.0667 | 4700 | 0.0001 | - |
|
100 |
+
| 1.0781 | 4750 | 0.0001 | - |
|
101 |
+
| 1.0894 | 4800 | 0.0001 | - |
|
102 |
+
| 1.1008 | 4850 | 0.0001 | - |
|
103 |
+
| 1.1121 | 4900 | 0.0001 | - |
|
104 |
+
| 1.1235 | 4950 | 0.0001 | - |
|
105 |
+
| 1.1348 | 5000 | 0.0001 | - |
|
106 |
+
| 1.1462 | 5050 | 0.0002 | - |
|
107 |
+
| 1.1575 | 5100 | 0.0001 | - |
|
108 |
+
| 1.1689 | 5150 | 0.0001 | - |
|
109 |
+
| 1.1802 | 5200 | 0.0001 | - |
|
110 |
+
| 1.1916 | 5250 | 0.0001 | - |
|
111 |
+
| 1.2029 | 5300 | 0.0001 | - |
|
112 |
+
| 1.2143 | 5350 | 0.0001 | - |
|
113 |
+
| 1.2256 | 5400 | 0.0001 | - |
|
114 |
+
| 1.2369 | 5450 | 0.0001 | - |
|
115 |
+
| 1.2483 | 5500 | 0.0001 | - |
|
116 |
+
| 1.2596 | 5550 | 0.0001 | - |
|
117 |
+
| 1.2710 | 5600 | 0.0001 | - |
|
118 |
+
| 1.2823 | 5650 | 0.0001 | - |
|
119 |
+
| 1.2937 | 5700 | 0.0001 | - |
|
120 |
+
| 1.3050 | 5750 | 0.0001 | - |
|
121 |
+
| 1.3164 | 5800 | 0.0001 | - |
|
122 |
+
| 1.3277 | 5850 | 0.0001 | - |
|
123 |
+
| 1.3391 | 5900 | 0.0001 | - |
|
124 |
+
| 1.3504 | 5950 | 0.0001 | - |
|
125 |
+
| 1.3618 | 6000 | 0.0001 | - |
|
126 |
+
| 1.3731 | 6050 | 0.0001 | - |
|
127 |
+
| 1.3845 | 6100 | 0.0001 | - |
|
128 |
+
| 1.3958 | 6150 | 0.0001 | - |
|
129 |
+
| 1.4072 | 6200 | 0.0001 | - |
|
130 |
+
| 1.4185 | 6250 | 0.0001 | - |
|
131 |
+
| 1.4299 | 6300 | 0.0001 | - |
|
132 |
+
| 1.4412 | 6350 | 0.0001 | - |
|
133 |
+
| 1.4526 | 6400 | 0.0001 | - |
|
134 |
+
| 1.4639 | 6450 | 0.0 | - |
|
135 |
+
| 1.4753 | 6500 | 0.0001 | - |
|
136 |
+
| 1.4866 | 6550 | 0.0011 | - |
|
137 |
+
| 1.4980 | 6600 | 0.0001 | - |
|
138 |
+
| 1.5093 | 6650 | 0.0001 | - |
|
139 |
+
| 1.5207 | 6700 | 0.0 | - |
|
140 |
+
| 1.5320 | 6750 | 0.0 | - |
|
141 |
+
| 1.5433 | 6800 | 0.0001 | - |
|
142 |
+
| 1.5547 | 6850 | 0.0001 | - |
|
143 |
+
| 1.5660 | 6900 | 0.0001 | - |
|
144 |
+
| 1.5774 | 6950 | 0.0001 | - |
|
145 |
+
| 1.5887 | 7000 | 0.0001 | - |
|
146 |
+
| 1.6001 | 7050 | 0.0001 | - |
|
147 |
+
| 1.6114 | 7100 | 0.0001 | - |
|
148 |
+
| 1.6228 | 7150 | 0.0 | - |
|
149 |
+
| 1.6341 | 7200 | 0.0 | - |
|
150 |
+
| 1.6455 | 7250 | 0.0001 | - |
|
151 |
+
| 1.6568 | 7300 | 0.0001 | - |
|
152 |
+
| 1.6682 | 7350 | 0.0001 | - |
|
153 |
+
| 1.6795 | 7400 | 0.0001 | - |
|
154 |
+
| 1.6909 | 7450 | 0.0 | - |
|
155 |
+
| 1.7022 | 7500 | 0.0001 | - |
|
156 |
+
| 1.7136 | 7550 | 0.0001 | - |
|
157 |
+
| 1.7249 | 7600 | 0.0001 | - |
|
158 |
+
| 1.7363 | 7650 | 0.0 | - |
|
159 |
+
| 1.7476 | 7700 | 0.0 | - |
|
160 |
+
| 1.7590 | 7750 | 0.0 | - |
|
161 |
+
| 1.7703 | 7800 | 0.0001 | - |
|
162 |
+
| 1.7817 | 7850 | 0.0 | - |
|
163 |
+
| 1.7930 | 7900 | 0.0 | - |
|
164 |
+
| 1.8044 | 7950 | 0.0 | - |
|
165 |
+
| 1.8157 | 8000 | 0.0001 | - |
|
166 |
+
| 1.8271 | 8050 | 0.0 | - |
|
167 |
+
| 1.8384 | 8100 | 0.0 | - |
|
168 |
+
| 1.8498 | 8150 | 0.0001 | - |
|
169 |
+
| 1.8611 | 8200 | 0.0 | - |
|
170 |
+
| 1.8724 | 8250 | 0.0001 | - |
|
171 |
+
| 1.8838 | 8300 | 0.0 | - |
|
172 |
+
| 1.8951 | 8350 | 0.0001 | - |
|
173 |
+
| 1.9065 | 8400 | 0.0001 | - |
|
174 |
+
| 1.9178 | 8450 | 0.0001 | - |
|
175 |
+
| 1.9292 | 8500 | 0.0 | - |
|
176 |
+
| 1.9405 | 8550 | 0.0 | - |
|
177 |
+
| 1.9519 | 8600 | 0.0 | - |
|
178 |
+
| 1.9632 | 8650 | 0.0 | - |
|
179 |
+
| 1.9746 | 8700 | 0.0 | - |
|
180 |
+
| 1.9859 | 8750 | 0.0 | - |
|
181 |
+
| 1.9973 | 8800 | 0.0 | - |
|
182 |
+
| 2.0 | 8812 | - | 0.0549 |
|
183 |
+
| 2.0086 | 8850 | 0.0 | - |
|
184 |
+
| 2.0200 | 8900 | 0.0 | - |
|
185 |
+
| 2.0313 | 8950 | 0.0 | - |
|
186 |
+
| 2.0427 | 9000 | 0.0 | - |
|
187 |
+
| 2.0540 | 9050 | 0.0 | - |
|
188 |
+
| 2.0654 | 9100 | 0.0 | - |
|
189 |
+
| 2.0767 | 9150 | 0.0 | - |
|
190 |
+
| 2.0881 | 9200 | 0.0 | - |
|
191 |
+
| 2.0994 | 9250 | 0.0 | - |
|
192 |
+
| 2.1108 | 9300 | 0.0 | - |
|
193 |
+
| 2.1221 | 9350 | 0.0 | - |
|
194 |
+
| 2.1335 | 9400 | 0.0001 | - |
|
195 |
+
| 2.1448 | 9450 | 0.0 | - |
|
196 |
+
| 2.1562 | 9500 | 0.0 | - |
|
197 |
+
| 2.1675 | 9550 | 0.0 | - |
|
198 |
+
| 2.1788 | 9600 | 0.0 | - |
|
199 |
+
| 2.1902 | 9650 | 0.0 | - |
|
200 |
+
| 2.2015 | 9700 | 0.0 | - |
|
201 |
+
| 2.2129 | 9750 | 0.0 | - |
|
202 |
+
| 2.2242 | 9800 | 0.0 | - |
|
203 |
+
| 2.2356 | 9850 | 0.0 | - |
|
204 |
+
| 2.2469 | 9900 | 0.0 | - |
|
205 |
+
| 2.2583 | 9950 | 0.0 | - |
|
206 |
+
| 2.2696 | 10000 | 0.0 | - |
|
207 |
+
| 2.2810 | 10050 | 0.0 | - |
|
208 |
+
| 2.2923 | 10100 | 0.0 | - |
|
209 |
+
| 2.3037 | 10150 | 0.0 | - |
|
210 |
+
| 2.3150 | 10200 | 0.0 | - |
|
211 |
+
| 2.3264 | 10250 | 0.0 | - |
|
212 |
+
| 2.3377 | 10300 | 0.0 | - |
|
213 |
+
| 2.3491 | 10350 | 0.0 | - |
|
214 |
+
| 2.3604 | 10400 | 0.0 | - |
|
215 |
+
| 2.3718 | 10450 | 0.0001 | - |
|
216 |
+
| 2.3831 | 10500 | 0.0 | - |
|
217 |
+
| 2.3945 | 10550 | 0.0 | - |
|
218 |
+
| 2.4058 | 10600 | 0.0 | - |
|
219 |
+
| 2.4172 | 10650 | 0.0 | - |
|
220 |
+
| 2.4285 | 10700 | 0.0 | - |
|
221 |
+
| 2.4399 | 10750 | 0.0 | - |
|
222 |
+
| 2.4512 | 10800 | 0.0 | - |
|
223 |
+
| 2.4626 | 10850 | 0.0 | - |
|
224 |
+
| 2.4739 | 10900 | 0.0 | - |
|
225 |
+
| 2.4852 | 10950 | 0.0 | - |
|
226 |
+
| 2.4966 | 11000 | 0.0 | - |
|
227 |
+
| 2.5079 | 11050 | 0.0 | - |
|
228 |
+
| 2.5193 | 11100 | 0.0 | - |
|
229 |
+
| 2.5306 | 11150 | 0.0 | - |
|
230 |
+
| 2.5420 | 11200 | 0.0 | - |
|
231 |
+
| 2.5533 | 11250 | 0.0 | - |
|
232 |
+
| 2.5647 | 11300 | 0.0 | - |
|
233 |
+
| 2.5760 | 11350 | 0.0 | - |
|
234 |
+
| 2.5874 | 11400 | 0.0 | - |
|
235 |
+
| 2.5987 | 11450 | 0.0 | - |
|
236 |
+
| 2.6101 | 11500 | 0.0 | - |
|
237 |
+
| 2.6214 | 11550 | 0.0 | - |
|
238 |
+
| 2.6328 | 11600 | 0.0 | - |
|
239 |
+
| 2.6441 | 11650 | 0.0 | - |
|
240 |
+
| 2.6555 | 11700 | 0.0 | - |
|
241 |
+
| 2.6668 | 11750 | 0.0 | - |
|
242 |
+
| 2.6782 | 11800 | 0.0 | - |
|
243 |
+
| 2.6895 | 11850 | 0.0 | - |
|
244 |
+
| 2.7009 | 11900 | 0.0 | - |
|
245 |
+
| 2.7122 | 11950 | 0.0 | - |
|
246 |
+
| 2.7236 | 12000 | 0.0 | - |
|
247 |
+
| 2.7349 | 12050 | 0.0 | - |
|
248 |
+
| 2.7463 | 12100 | 0.0 | - |
|
249 |
+
| 2.7576 | 12150 | 0.0 | - |
|
250 |
+
| 2.7690 | 12200 | 0.0 | - |
|
251 |
+
| 2.7803 | 12250 | 0.0 | - |
|
252 |
+
| 2.7916 | 12300 | 0.0 | - |
|
253 |
+
| 2.8030 | 12350 | 0.0 | - |
|
254 |
+
| 2.8143 | 12400 | 0.0 | - |
|
255 |
+
| 2.8257 | 12450 | 0.0 | - |
|
256 |
+
| 2.8370 | 12500 | 0.0 | - |
|
257 |
+
| 2.8484 | 12550 | 0.0 | - |
|
258 |
+
| 2.8597 | 12600 | 0.0 | - |
|
259 |
+
| 2.8711 | 12650 | 0.0 | - |
|
260 |
+
| 2.8824 | 12700 | 0.0 | - |
|
261 |
+
| 2.8938 | 12750 | 0.0 | - |
|
262 |
+
| 2.9051 | 12800 | 0.0 | - |
|
263 |
+
| 2.9165 | 12850 | 0.0 | - |
|
264 |
+
| 2.9278 | 12900 | 0.0 | - |
|
265 |
+
| 2.9392 | 12950 | 0.0 | - |
|
266 |
+
| 2.9505 | 13000 | 0.0 | - |
|
267 |
+
| 2.9619 | 13050 | 0.0 | - |
|
268 |
+
| 2.9732 | 13100 | 0.0 | - |
|
269 |
+
| 2.9846 | 13150 | 0.0 | - |
|
270 |
+
| 2.9959 | 13200 | 0.0 | - |
|
271 |
+
| 3.0 | 13218 | - | 0.0469 |
|
272 |
+
| 3.0073 | 13250 | 0.0 | - |
|
273 |
+
| 3.0186 | 13300 | 0.0 | - |
|
274 |
+
| 3.0300 | 13350 | 0.0 | - |
|
275 |
+
| 3.0413 | 13400 | 0.0 | - |
|
276 |
+
| 3.0527 | 13450 | 0.0 | - |
|
277 |
+
| 3.0640 | 13500 | 0.0 | - |
|
278 |
+
| 3.0754 | 13550 | 0.0 | - |
|
279 |
+
| 3.0867 | 13600 | 0.0 | - |
|
280 |
+
| 3.0980 | 13650 | 0.0 | - |
|
281 |
+
| 3.1094 | 13700 | 0.0 | - |
|
282 |
+
| 3.1207 | 13750 | 0.0 | - |
|
283 |
+
| 3.1321 | 13800 | 0.0 | - |
|
284 |
+
| 3.1434 | 13850 | 0.0 | - |
|
285 |
+
| 3.1548 | 13900 | 0.0 | - |
|
286 |
+
| 3.1661 | 13950 | 0.0 | - |
|
287 |
+
| 3.1775 | 14000 | 0.0 | - |
|
288 |
+
| 3.1888 | 14050 | 0.0 | - |
|
289 |
+
| 3.2002 | 14100 | 0.0 | - |
|
290 |
+
| 3.2115 | 14150 | 0.0 | - |
|
291 |
+
| 3.2229 | 14200 | 0.0 | - |
|
292 |
+
| 3.2342 | 14250 | 0.0 | - |
|
293 |
+
| 3.2456 | 14300 | 0.0 | - |
|
294 |
+
| 3.2569 | 14350 | 0.0 | - |
|
295 |
+
| 3.2683 | 14400 | 0.0 | - |
|
296 |
+
| 3.2796 | 14450 | 0.0 | - |
|
297 |
+
| 3.2910 | 14500 | 0.0 | - |
|
298 |
+
| 3.3023 | 14550 | 0.0 | - |
|
299 |
+
| 3.3137 | 14600 | 0.0 | - |
|
300 |
+
| 3.3250 | 14650 | 0.0 | - |
|
301 |
+
| 3.3364 | 14700 | 0.0 | - |
|
302 |
+
| 3.3477 | 14750 | 0.0 | - |
|
303 |
+
| 3.3591 | 14800 | 0.0 | - |
|
304 |
+
| 3.3704 | 14850 | 0.0 | - |
|
305 |
+
| 3.3818 | 14900 | 0.0 | - |
|
306 |
+
| 3.3931 | 14950 | 0.0 | - |
|
307 |
+
| 3.4044 | 15000 | 0.0 | - |
|
308 |
+
| 3.4158 | 15050 | 0.0 | - |
|
309 |
+
| 3.4271 | 15100 | 0.0 | - |
|
310 |
+
| 3.4385 | 15150 | 0.0 | - |
|
311 |
+
| 3.4498 | 15200 | 0.0 | - |
|
312 |
+
| 3.4612 | 15250 | 0.0 | - |
|
313 |
+
| 3.4725 | 15300 | 0.0 | - |
|
314 |
+
| 3.4839 | 15350 | 0.0 | - |
|
315 |
+
| 3.4952 | 15400 | 0.0 | - |
|
316 |
+
| 3.5066 | 15450 | 0.0 | - |
|
317 |
+
| 3.5179 | 15500 | 0.0 | - |
|
318 |
+
| 3.5293 | 15550 | 0.0 | - |
|
319 |
+
| 3.5406 | 15600 | 0.0 | - |
|
320 |
+
| 3.5520 | 15650 | 0.0 | - |
|
321 |
+
| 3.5633 | 15700 | 0.0 | - |
|
322 |
+
| 3.5747 | 15750 | 0.0 | - |
|
323 |
+
| 3.5860 | 15800 | 0.0 | - |
|
324 |
+
| 3.5974 | 15850 | 0.0 | - |
|
325 |
+
| 3.6087 | 15900 | 0.0 | - |
|
326 |
+
| 3.6201 | 15950 | 0.0 | - |
|
327 |
+
| 3.6314 | 16000 | 0.0 | - |
|
328 |
+
| 3.6428 | 16050 | 0.0 | - |
|
329 |
+
| 3.6541 | 16100 | 0.0 | - |
|
330 |
+
| 3.6655 | 16150 | 0.0 | - |
|
331 |
+
| 3.6768 | 16200 | 0.0 | - |
|
332 |
+
| 3.6882 | 16250 | 0.0 | - |
|
333 |
+
| 3.6995 | 16300 | 0.0 | - |
|
334 |
+
| 3.7108 | 16350 | 0.0 | - |
|
335 |
+
| 3.7222 | 16400 | 0.0 | - |
|
336 |
+
| 3.7335 | 16450 | 0.0 | - |
|
337 |
+
| 3.7449 | 16500 | 0.0 | - |
|
338 |
+
| 3.7562 | 16550 | 0.0 | - |
|
339 |
+
| 3.7676 | 16600 | 0.0 | - |
|
340 |
+
| 3.7789 | 16650 | 0.0 | - |
|
341 |
+
| 3.7903 | 16700 | 0.0 | - |
|
342 |
+
| 3.8016 | 16750 | 0.0 | - |
|
343 |
+
| 3.8130 | 16800 | 0.0 | - |
|
344 |
+
| 3.8243 | 16850 | 0.0 | - |
|
345 |
+
| 3.8357 | 16900 | 0.0 | - |
|
346 |
+
| 3.8470 | 16950 | 0.0 | - |
|
347 |
+
| 3.8584 | 17000 | 0.0 | - |
|
348 |
+
| 3.8697 | 17050 | 0.0 | - |
|
349 |
+
| 3.8811 | 17100 | 0.0 | - |
|
350 |
+
| 3.8924 | 17150 | 0.0 | - |
|
351 |
+
| 3.9038 | 17200 | 0.0 | - |
|
352 |
+
| 3.9151 | 17250 | 0.0 | - |
|
353 |
+
| 3.9265 | 17300 | 0.0 | - |
|
354 |
+
| 3.9378 | 17350 | 0.0 | - |
|
355 |
+
| 3.9492 | 17400 | 0.0 | - |
|
356 |
+
| 3.9605 | 17450 | 0.0 | - |
|
357 |
+
| 3.9719 | 17500 | 0.0 | - |
|
358 |
+
| 3.9832 | 17550 | 0.0 | - |
|
359 |
+
| 3.9946 | 17600 | 0.0 | - |
|
360 |
+
| 4.0 | 17624 | - | 0.0404 |
|
361 |
+
| 4.0059 | 17650 | 0.0 | - |
|
362 |
+
| 4.0172 | 17700 | 0.0 | - |
|
363 |
+
| 4.0286 | 17750 | 0.0 | - |
|
364 |
+
| 4.0399 | 17800 | 0.0 | - |
|
365 |
+
| 4.0513 | 17850 | 0.0 | - |
|
366 |
+
| 4.0626 | 17900 | 0.0 | - |
|
367 |
+
| 4.0740 | 17950 | 0.0 | - |
|
368 |
+
| 4.0853 | 18000 | 0.0 | - |
|
369 |
+
| 4.0967 | 18050 | 0.0 | - |
|
370 |
+
| 4.1080 | 18100 | 0.0 | - |
|
371 |
+
| 4.1194 | 18150 | 0.0 | - |
|
372 |
+
| 4.1307 | 18200 | 0.0 | - |
|
373 |
+
| 4.1421 | 18250 | 0.0 | - |
|
374 |
+
| 4.1534 | 18300 | 0.0 | - |
|
375 |
+
| 4.1648 | 18350 | 0.0 | - |
|
376 |
+
| 4.1761 | 18400 | 0.0 | - |
|
377 |
+
| 4.1875 | 18450 | 0.0 | - |
|
378 |
+
| 4.1988 | 18500 | 0.0 | - |
|
379 |
+
| 4.2102 | 18550 | 0.0 | - |
|
380 |
+
| 4.2215 | 18600 | 0.0 | - |
|
381 |
+
| 4.2329 | 18650 | 0.0 | - |
|
382 |
+
| 4.2442 | 18700 | 0.0 | - |
|
383 |
+
| 4.2556 | 18750 | 0.0 | - |
|
384 |
+
| 4.2669 | 18800 | 0.0 | - |
|
385 |
+
| 4.2783 | 18850 | 0.0 | - |
|
386 |
+
| 4.2896 | 18900 | 0.0 | - |
|
387 |
+
| 4.3010 | 18950 | 0.0 | - |
|
388 |
+
| 4.3123 | 19000 | 0.0 | - |
|
389 |
+
| 4.3236 | 19050 | 0.0 | - |
|
390 |
+
| 4.3350 | 19100 | 0.0 | - |
|
391 |
+
| 4.3463 | 19150 | 0.0 | - |
|
392 |
+
| 4.3577 | 19200 | 0.0 | - |
|
393 |
+
| 4.3690 | 19250 | 0.0 | - |
|
394 |
+
| 4.3804 | 19300 | 0.0 | - |
|
395 |
+
| 4.3917 | 19350 | 0.0 | - |
|
396 |
+
| 4.4031 | 19400 | 0.0 | - |
|
397 |
+
| 4.4144 | 19450 | 0.0 | - |
|
398 |
+
| 4.4258 | 19500 | 0.0 | - |
|
399 |
+
| 4.4371 | 19550 | 0.0 | - |
|
400 |
+
| 4.4485 | 19600 | 0.0 | - |
|
401 |
+
| 4.4598 | 19650 | 0.0 | - |
|
402 |
+
| 4.4712 | 19700 | 0.0 | - |
|
403 |
+
| 4.4825 | 19750 | 0.0 | - |
|
404 |
+
| 4.4939 | 19800 | 0.0 | - |
|
405 |
+
| 4.5052 | 19850 | 0.0 | - |
|
406 |
+
| 4.5166 | 19900 | 0.0 | - |
|
407 |
+
| 4.5279 | 19950 | 0.0 | - |
|
408 |
+
| 4.5393 | 20000 | 0.0 | - |
|
409 |
+
| 4.5506 | 20050 | 0.0 | - |
|
410 |
+
| 4.5620 | 20100 | 0.0 | - |
|
411 |
+
| 4.5733 | 20150 | 0.0 | - |
|
412 |
+
| 4.5847 | 20200 | 0.0 | - |
|
413 |
+
| 4.5960 | 20250 | 0.0 | - |
|
414 |
+
| 4.6074 | 20300 | 0.0 | - |
|
415 |
+
| 4.6187 | 20350 | 0.0 | - |
|
416 |
+
| 4.6300 | 20400 | 0.0 | - |
|
417 |
+
| 4.6414 | 20450 | 0.0 | - |
|
418 |
+
| 4.6527 | 20500 | 0.0 | - |
|
419 |
+
| 4.6641 | 20550 | 0.0 | - |
|
420 |
+
| 4.6754 | 20600 | 0.0 | - |
|
421 |
+
| 4.6868 | 20650 | 0.0 | - |
|
422 |
+
| 4.6981 | 20700 | 0.0 | - |
|
423 |
+
| 4.7095 | 20750 | 0.0 | - |
|
424 |
+
| 4.7208 | 20800 | 0.0 | - |
|
425 |
+
| 4.7322 | 20850 | 0.0 | - |
|
426 |
+
| 4.7435 | 20900 | 0.0 | - |
|
427 |
+
| 4.7549 | 20950 | 0.0 | - |
|
428 |
+
| 4.7662 | 21000 | 0.0 | - |
|
429 |
+
| 4.7776 | 21050 | 0.0 | - |
|
430 |
+
| 4.7889 | 21100 | 0.0 | - |
|
431 |
+
| 4.8003 | 21150 | 0.0 | - |
|
432 |
+
| 4.8116 | 21200 | 0.0 | - |
|
433 |
+
| 4.8230 | 21250 | 0.0 | - |
|
434 |
+
| 4.8343 | 21300 | 0.0 | - |
|
435 |
+
| 4.8457 | 21350 | 0.0 | - |
|
436 |
+
| 4.8570 | 21400 | 0.0 | - |
|
437 |
+
| 4.8684 | 21450 | 0.0 | - |
|
438 |
+
| 4.8797 | 21500 | 0.0 | - |
|
439 |
+
| 4.8911 | 21550 | 0.0 | - |
|
440 |
+
| 4.9024 | 21600 | 0.0 | - |
|
441 |
+
| 4.9138 | 21650 | 0.0 | - |
|
442 |
+
| 4.9251 | 21700 | 0.0 | - |
|
443 |
+
| 4.9365 | 21750 | 0.0 | - |
|
444 |
+
| 4.9478 | 21800 | 0.0 | - |
|
445 |
+
| 4.9591 | 21850 | 0.0 | - |
|
446 |
+
| 4.9705 | 21900 | 0.0 | - |
|
447 |
+
| 4.9818 | 21950 | 0.0 | - |
|
448 |
+
| 4.9932 | 22000 | 0.0 | - |
|
449 |
+
| **5.0** | **22030** | **-** | **0.038** |
|
450 |
+
| 5.0045 | 22050 | 0.0 | - |
|
451 |
+
| 5.0159 | 22100 | 0.0 | - |
|
452 |
+
| 5.0272 | 22150 | 0.0 | - |
|
453 |
+
| 5.0386 | 22200 | 0.0 | - |
|
454 |
+
| 5.0499 | 22250 | 0.0 | - |
|
455 |
+
| 5.0613 | 22300 | 0.0 | - |
|
456 |
+
| 5.0726 | 22350 | 0.0 | - |
|
457 |
+
| 5.0840 | 22400 | 0.0 | - |
|
458 |
+
| 5.0953 | 22450 | 0.0 | - |
|
459 |
+
| 5.1067 | 22500 | 0.0 | - |
|
460 |
+
| 5.1180 | 22550 | 0.0 | - |
|
461 |
+
| 5.1294 | 22600 | 0.0 | - |
|
462 |
+
| 5.1407 | 22650 | 0.0 | - |
|
463 |
+
| 5.1521 | 22700 | 0.0 | - |
|
464 |
+
| 5.1634 | 22750 | 0.0 | - |
|
465 |
+
| 5.1748 | 22800 | 0.0 | - |
|
466 |
+
| 5.1861 | 22850 | 0.0 | - |
|
467 |
+
| 5.1975 | 22900 | 0.0 | - |
|
468 |
+
| 5.2088 | 22950 | 0.0 | - |
|
469 |
+
| 5.2202 | 23000 | 0.0 | - |
|
470 |
+
| 5.2315 | 23050 | 0.0 | - |
|
471 |
+
| 5.2429 | 23100 | 0.0 | - |
|
472 |
+
| 5.2542 | 23150 | 0.0 | - |
|
473 |
+
| 5.2655 | 23200 | 0.0 | - |
|
474 |
+
| 5.2769 | 23250 | 0.0 | - |
|
475 |
+
| 5.2882 | 23300 | 0.0 | - |
|
476 |
+
| 5.2996 | 23350 | 0.0 | - |
|
477 |
+
| 5.3109 | 23400 | 0.0 | - |
|
478 |
+
| 5.3223 | 23450 | 0.0 | - |
|
479 |
+
| 5.3336 | 23500 | 0.0 | - |
|
480 |
+
| 5.3450 | 23550 | 0.0 | - |
|
481 |
+
| 5.3563 | 23600 | 0.0 | - |
|
482 |
+
| 5.3677 | 23650 | 0.0 | - |
|
483 |
+
| 5.3790 | 23700 | 0.0 | - |
|
484 |
+
| 5.3904 | 23750 | 0.0 | - |
|
485 |
+
| 5.4017 | 23800 | 0.0 | - |
|
486 |
+
| 5.4131 | 23850 | 0.0 | - |
|
487 |
+
| 5.4244 | 23900 | 0.0 | - |
|
488 |
+
| 5.4358 | 23950 | 0.0 | - |
|
489 |
+
| 5.4471 | 24000 | 0.0 | - |
|
490 |
+
| 5.4585 | 24050 | 0.0 | - |
|
491 |
+
| 5.4698 | 24100 | 0.0 | - |
|
492 |
+
| 5.4812 | 24150 | 0.0 | - |
|
493 |
+
| 5.4925 | 24200 | 0.0 | - |
|
494 |
+
| 5.5039 | 24250 | 0.0 | - |
|
495 |
+
| 5.5152 | 24300 | 0.0 | - |
|
496 |
+
| 5.5266 | 24350 | 0.0 | - |
|
497 |
+
| 5.5379 | 24400 | 0.0 | - |
|
498 |
+
| 5.5493 | 24450 | 0.0 | - |
|
499 |
+
| 5.5606 | 24500 | 0.0 | - |
|
500 |
+
| 5.5719 | 24550 | 0.0 | - |
|
501 |
+
| 5.5833 | 24600 | 0.0 | - |
|
502 |
+
| 5.5946 | 24650 | 0.0 | - |
|
503 |
+
| 5.6060 | 24700 | 0.0 | - |
|
504 |
+
| 5.6173 | 24750 | 0.0 | - |
|
505 |
+
| 5.6287 | 24800 | 0.0 | - |
|
506 |
+
| 5.6400 | 24850 | 0.0 | - |
|
507 |
+
| 5.6514 | 24900 | 0.0 | - |
|
508 |
+
| 5.6627 | 24950 | 0.0 | - |
|
509 |
+
| 5.6741 | 25000 | 0.0 | - |
|
510 |
+
| 5.6854 | 25050 | 0.0 | - |
|
511 |
+
| 5.6968 | 25100 | 0.0 | - |
|
512 |
+
| 5.7081 | 25150 | 0.0 | - |
|
513 |
+
| 5.7195 | 25200 | 0.0 | - |
|
514 |
+
| 5.7308 | 25250 | 0.0 | - |
|
515 |
+
| 5.7422 | 25300 | 0.0 | - |
|
516 |
+
| 5.7535 | 25350 | 0.0 | - |
|
517 |
+
| 5.7649 | 25400 | 0.0 | - |
|
518 |
+
| 5.7762 | 25450 | 0.0 | - |
|
519 |
+
| 5.7876 | 25500 | 0.0 | - |
|
520 |
+
| 5.7989 | 25550 | 0.0 | - |
|
521 |
+
| 5.8103 | 25600 | 0.0 | - |
|
522 |
+
| 5.8216 | 25650 | 0.0 | - |
|
523 |
+
| 5.8330 | 25700 | 0.0 | - |
|
524 |
+
| 5.8443 | 25750 | 0.0 | - |
|
525 |
+
| 5.8557 | 25800 | 0.0 | - |
|
526 |
+
| 5.8670 | 25850 | 0.0 | - |
|
527 |
+
| 5.8783 | 25900 | 0.0 | - |
|
528 |
+
| 5.8897 | 25950 | 0.0 | - |
|
529 |
+
| 5.9010 | 26000 | 0.0 | - |
|
530 |
+
| 5.9124 | 26050 | 0.0 | - |
|
531 |
+
| 5.9237 | 26100 | 0.0 | - |
|
532 |
+
| 5.9351 | 26150 | 0.0 | - |
|
533 |
+
| 5.9464 | 26200 | 0.0 | - |
|
534 |
+
| 5.9578 | 26250 | 0.0 | - |
|
535 |
+
| 5.9691 | 26300 | 0.0 | - |
|
536 |
+
| 5.9805 | 26350 | 0.0 | - |
|
537 |
+
| 5.9918 | 26400 | 0.0 | - |
|
538 |
+
| 6.0 | 26436 | - | 0.0382 |
|
539 |
+
|
540 |
+
* The bold row denotes the saved checkpoint.
|