upload sailvit-large
Browse files- config.json +24 -0
- configuration_sailvit.py +62 -0
- model.safetensors +3 -0
- modeling_sailvit.py +198 -0
config.json
ADDED
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"SAILViTModel"
|
4 |
+
],
|
5 |
+
"attention_dropout": 0.0,
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "configuration_sailvit.SAILViTConfig",
|
8 |
+
"AutoModel": "modeling_sailvit.SAILViTModel"
|
9 |
+
},
|
10 |
+
"hidden_size": 1024,
|
11 |
+
"image_size": 448,
|
12 |
+
"intermediate_size": 2816,
|
13 |
+
"model_type": "sailvit",
|
14 |
+
"num_attention_heads": 8,
|
15 |
+
"num_channels": 3,
|
16 |
+
"num_hidden_layers": 24,
|
17 |
+
"patch_size": 14,
|
18 |
+
"projection_dropout": 0.0,
|
19 |
+
"qkv_bias": false,
|
20 |
+
"rms_norm_eps": 1e-05,
|
21 |
+
"torch_dtype": "bfloat16",
|
22 |
+
"transformers_version": "4.45.1",
|
23 |
+
"use_bias": false
|
24 |
+
}
|
configuration_sailvit.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any
|
2 |
+
|
3 |
+
from transformers.configuration_utils import PretrainedConfig
|
4 |
+
|
5 |
+
__all__ = ["SAILViTConfig"]
|
6 |
+
|
7 |
+
|
8 |
+
class SAILViTConfig(PretrainedConfig):
|
9 |
+
"""This is the configuration class to store the configuration of an [`SAILViTModel`].
|
10 |
+
|
11 |
+
Instantiating a configuration with the defaults will yield a similar configuration
|
12 |
+
to that of the [apple/SAILViT-Huge-600M-448px](https://huggingface.co/BytedanceDouyinContent/SAILViT-Huge-600M-448px).
|
13 |
+
|
14 |
+
Args:
|
15 |
+
hidden_size: Dimension of the hidden representations.
|
16 |
+
intermediate_size: Dimension of the SwiGLU representations.
|
17 |
+
num_hidden_layers: Number of hidden layers in the Transformer.
|
18 |
+
num_attention_heads: Number of attention heads for each attention layer
|
19 |
+
in the Transformer.
|
20 |
+
num_channels: Number of input channels.
|
21 |
+
image_size: Image size.
|
22 |
+
patch_size: Patch size.
|
23 |
+
rms_norm_eps: Epsilon value used for the RMS normalization layer.
|
24 |
+
attention_dropout: Dropout ratio for attention probabilities.
|
25 |
+
projection_dropout: Dropout ratio for the projection layer after the attention.
|
26 |
+
qkv_bias: Whether to add a bias to the queries, keys and values.
|
27 |
+
use_bias: Whether to add a bias in the feed-forward and projection layers.
|
28 |
+
kwargs: Keyword arguments for the [`PretrainedConfig`].
|
29 |
+
"""
|
30 |
+
|
31 |
+
model_type: str = "sailvit"
|
32 |
+
|
33 |
+
def __init__(
|
34 |
+
self,
|
35 |
+
hidden_size: int = 1024,
|
36 |
+
intermediate_size: int = 2816,
|
37 |
+
num_hidden_layers: int = 24,
|
38 |
+
num_attention_heads: int = 8,
|
39 |
+
num_channels: int = 3,
|
40 |
+
image_size: int = 224,
|
41 |
+
patch_size: int = 14,
|
42 |
+
rms_norm_eps: float = 1e-5,
|
43 |
+
attention_dropout: float = 0.0,
|
44 |
+
projection_dropout: float = 0.0,
|
45 |
+
qkv_bias: bool = False,
|
46 |
+
use_bias: bool = False,
|
47 |
+
**kwargs: Any,
|
48 |
+
):
|
49 |
+
super().__init__(**kwargs)
|
50 |
+
self.hidden_size = hidden_size
|
51 |
+
self.intermediate_size = intermediate_size
|
52 |
+
self.num_hidden_layers = num_hidden_layers
|
53 |
+
self.num_attention_heads = num_attention_heads
|
54 |
+
self.num_channels = num_channels
|
55 |
+
self.patch_size = patch_size
|
56 |
+
self.image_size = image_size
|
57 |
+
self.attention_dropout = attention_dropout
|
58 |
+
self.rms_norm_eps = rms_norm_eps
|
59 |
+
|
60 |
+
self.projection_dropout = projection_dropout
|
61 |
+
self.qkv_bias = qkv_bias
|
62 |
+
self.use_bias = use_bias
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d131eccf6df91ea2586e139e457a6ed991a60ac082334011dc2ac86b1a608e97
|
3 |
+
size 619986688
|
modeling_sailvit.py
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# adapted from https://huggingface.co/apple/aimv2-huge-patch14-448 (modification: add gradient checkpoint support)
|
2 |
+
from typing import Optional, Tuple, Union
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from .configuration_sailvit import SAILViTConfig
|
6 |
+
from torch import nn
|
7 |
+
from torch.nn import functional as F
|
8 |
+
from transformers.modeling_outputs import BaseModelOutputWithNoAttention
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
|
11 |
+
__all__ = ["SAILViTModel"]
|
12 |
+
|
13 |
+
|
14 |
+
class RMSNorm(nn.Module):
|
15 |
+
def __init__(self, dim: int, eps: float = 1e-6):
|
16 |
+
super().__init__()
|
17 |
+
self.weight = nn.Parameter(torch.ones(dim))
|
18 |
+
self.eps = eps
|
19 |
+
|
20 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
21 |
+
output = self._norm(x.float()).type_as(x)
|
22 |
+
return output * self.weight
|
23 |
+
|
24 |
+
def extra_repr(self) -> str:
|
25 |
+
return f"{tuple(self.weight.shape)}, eps={self.eps}"
|
26 |
+
|
27 |
+
def _norm(self, x: torch.Tensor) -> torch.Tensor:
|
28 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
29 |
+
|
30 |
+
|
31 |
+
class SAILViTSwiGLUFFN(nn.Module):
|
32 |
+
def __init__(self, config: SAILViTConfig):
|
33 |
+
super().__init__()
|
34 |
+
hidden_features = config.intermediate_size
|
35 |
+
in_features = config.hidden_size
|
36 |
+
bias = config.use_bias
|
37 |
+
|
38 |
+
self.fc1 = nn.Linear(in_features, hidden_features, bias=bias)
|
39 |
+
self.fc2 = nn.Linear(hidden_features, in_features, bias=bias)
|
40 |
+
self.fc3 = nn.Linear(in_features, hidden_features, bias=bias)
|
41 |
+
|
42 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
43 |
+
x = F.silu(self.fc1(x)) * self.fc3(x)
|
44 |
+
x = self.fc2(x)
|
45 |
+
return x
|
46 |
+
|
47 |
+
|
48 |
+
class SAILViTPatchEmbed(nn.Module):
|
49 |
+
def __init__(self, config: SAILViTConfig):
|
50 |
+
super().__init__()
|
51 |
+
self.proj = nn.Conv2d(
|
52 |
+
config.num_channels,
|
53 |
+
config.hidden_size,
|
54 |
+
kernel_size=(config.patch_size, config.patch_size),
|
55 |
+
stride=(config.patch_size, config.patch_size),
|
56 |
+
)
|
57 |
+
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
58 |
+
|
59 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
60 |
+
x = self.proj(x).flatten(2).transpose(1, 2)
|
61 |
+
x = self.norm(x)
|
62 |
+
return x
|
63 |
+
|
64 |
+
|
65 |
+
class SAILViTPreprocessor(nn.Module):
|
66 |
+
def __init__(self, config: SAILViTConfig):
|
67 |
+
super().__init__()
|
68 |
+
num_patches = (config.image_size // config.patch_size) ** 2
|
69 |
+
|
70 |
+
self.patchifier = SAILViTPatchEmbed(config)
|
71 |
+
self.pos_embed = nn.Parameter(torch.zeros((1, num_patches, config.hidden_size)))
|
72 |
+
|
73 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
74 |
+
tokens = self.patchifier(x)
|
75 |
+
_, N, _ = tokens.shape
|
76 |
+
pos_embed = self.pos_embed.to(tokens.device)
|
77 |
+
tokens = tokens + pos_embed[:, :N]
|
78 |
+
return tokens
|
79 |
+
|
80 |
+
|
81 |
+
class SAILViTAttention(nn.Module):
|
82 |
+
def __init__(self, config: SAILViTConfig):
|
83 |
+
super().__init__()
|
84 |
+
dim = config.hidden_size
|
85 |
+
|
86 |
+
self.num_heads = config.num_attention_heads
|
87 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=config.qkv_bias)
|
88 |
+
self.attn_drop = nn.Dropout(config.attention_dropout)
|
89 |
+
self.proj = nn.Linear(dim, dim, bias=config.use_bias)
|
90 |
+
self.proj_drop = nn.Dropout(config.projection_dropout)
|
91 |
+
|
92 |
+
def forward(
|
93 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
94 |
+
) -> torch.Tensor:
|
95 |
+
B, N, C = x.shape
|
96 |
+
qkv = (
|
97 |
+
self.qkv(x)
|
98 |
+
.reshape(B, N, 3, self.num_heads, C // self.num_heads)
|
99 |
+
.permute(2, 0, 3, 1, 4)
|
100 |
+
)
|
101 |
+
q, k, v = qkv.unbind(0)
|
102 |
+
|
103 |
+
x = F.scaled_dot_product_attention(q, k, v, attn_mask=mask)
|
104 |
+
x = x.transpose(1, 2).contiguous().reshape(B, N, C)
|
105 |
+
x = self.proj(x)
|
106 |
+
x = self.proj_drop(x)
|
107 |
+
return x
|
108 |
+
|
109 |
+
|
110 |
+
class SAILViTBlock(nn.Module):
|
111 |
+
def __init__(self, config: SAILViTConfig):
|
112 |
+
super().__init__()
|
113 |
+
self.attn = SAILViTAttention(config)
|
114 |
+
self.norm_1 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
115 |
+
self.mlp = SAILViTSwiGLUFFN(config)
|
116 |
+
self.norm_2 = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
117 |
+
|
118 |
+
def forward(
|
119 |
+
self, x: torch.Tensor, mask: Optional[torch.Tensor] = None
|
120 |
+
) -> torch.Tensor:
|
121 |
+
x = x + self.attn(self.norm_1(x), mask)
|
122 |
+
x = x + self.mlp(self.norm_2(x))
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class SAILViTTransformer(nn.Module):
|
127 |
+
def __init__(self, config: SAILViTConfig):
|
128 |
+
super().__init__()
|
129 |
+
self.blocks = nn.ModuleList(
|
130 |
+
[SAILViTBlock(config) for _ in range(config.num_hidden_layers)]
|
131 |
+
)
|
132 |
+
self.post_trunk_norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
133 |
+
self.gradient_checkpointing = False
|
134 |
+
|
135 |
+
def forward(
|
136 |
+
self,
|
137 |
+
tokens: torch.Tensor,
|
138 |
+
mask: Optional[torch.Tensor] = None,
|
139 |
+
output_hidden_states: bool = False,
|
140 |
+
) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor, ...]]]:
|
141 |
+
hidden_states = () if output_hidden_states else None
|
142 |
+
for block in self.blocks:
|
143 |
+
if self.gradient_checkpointing and self.training:
|
144 |
+
tokens = self._gradient_checkpointing_func(block.__call__, tokens, mask)
|
145 |
+
else:
|
146 |
+
tokens = block(tokens, mask)
|
147 |
+
if output_hidden_states:
|
148 |
+
hidden_states += (tokens,)
|
149 |
+
tokens = self.post_trunk_norm(tokens)
|
150 |
+
return tokens, hidden_states
|
151 |
+
|
152 |
+
|
153 |
+
class SAILViTPretrainedModel(PreTrainedModel):
|
154 |
+
config_class = SAILViTConfig
|
155 |
+
base_model_prefix = "sailvit"
|
156 |
+
supports_gradient_checkpointing = True
|
157 |
+
main_input_name = "pixel_values"
|
158 |
+
_no_split_modules = ["SAILViTPreprocessor", "SAILViTBlock"]
|
159 |
+
_supports_sdpa = True
|
160 |
+
|
161 |
+
|
162 |
+
class SAILViTModel(SAILViTPretrainedModel):
|
163 |
+
def __init__(self, config: SAILViTConfig):
|
164 |
+
super().__init__(config)
|
165 |
+
self.preprocessor = SAILViTPreprocessor(config)
|
166 |
+
self.trunk = SAILViTTransformer(config)
|
167 |
+
|
168 |
+
def forward(
|
169 |
+
self,
|
170 |
+
pixel_values: torch.Tensor,
|
171 |
+
mask: Optional[torch.Tensor] = None,
|
172 |
+
output_hidden_states: Optional[bool] = None,
|
173 |
+
return_dict: Optional[bool] = None,
|
174 |
+
) -> Union[
|
175 |
+
Tuple[torch.Tensor],
|
176 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor, ...]],
|
177 |
+
BaseModelOutputWithNoAttention,
|
178 |
+
]:
|
179 |
+
if output_hidden_states is None:
|
180 |
+
output_hidden_states = self.config.output_hidden_states
|
181 |
+
if return_dict is None:
|
182 |
+
return_dict = self.config.use_return_dict
|
183 |
+
|
184 |
+
x = self.preprocessor(pixel_values)
|
185 |
+
x, hidden_states = self.trunk(
|
186 |
+
x, mask, output_hidden_states=output_hidden_states
|
187 |
+
)
|
188 |
+
|
189 |
+
if not return_dict:
|
190 |
+
res = (x,)
|
191 |
+
res += (hidden_states,) if output_hidden_states else ()
|
192 |
+
return res
|
193 |
+
|
194 |
+
return BaseModelOutputWithNoAttention(
|
195 |
+
last_hidden_state=x,
|
196 |
+
hidden_states=hidden_states,
|
197 |
+
)
|
198 |
+
|