update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- precision
|
7 |
+
- recall
|
8 |
+
- f1
|
9 |
+
- accuracy
|
10 |
+
model-index:
|
11 |
+
- name: spellcorrector_910_v13_autoregressive
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# spellcorrector_910_v13_autoregressive
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.0170
|
23 |
+
- Precision: 0.9963
|
24 |
+
- Recall: 0.9957
|
25 |
+
- F1: 0.9960
|
26 |
+
- Accuracy: 0.9953
|
27 |
+
|
28 |
+
## Model description
|
29 |
+
|
30 |
+
More information needed
|
31 |
+
|
32 |
+
## Intended uses & limitations
|
33 |
+
|
34 |
+
More information needed
|
35 |
+
|
36 |
+
## Training and evaluation data
|
37 |
+
|
38 |
+
More information needed
|
39 |
+
|
40 |
+
## Training procedure
|
41 |
+
|
42 |
+
### Training hyperparameters
|
43 |
+
|
44 |
+
The following hyperparameters were used during training:
|
45 |
+
- learning_rate: 2e-05
|
46 |
+
- train_batch_size: 4
|
47 |
+
- eval_batch_size: 4
|
48 |
+
- seed: 42
|
49 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- num_epochs: 25
|
52 |
+
|
53 |
+
### Training results
|
54 |
+
|
55 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
56 |
+
|:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
57 |
+
| 0.2531 | 1.0 | 1951 | 0.2224 | 0.9056 | 0.9748 | 0.9389 | 0.9590 |
|
58 |
+
| 0.208 | 2.0 | 3902 | 0.1857 | 0.9143 | 0.9734 | 0.9429 | 0.9613 |
|
59 |
+
| 0.1784 | 3.0 | 5853 | 0.1583 | 0.9213 | 0.9743 | 0.9470 | 0.9637 |
|
60 |
+
| 0.1604 | 4.0 | 7804 | 0.1380 | 0.9310 | 0.9735 | 0.9517 | 0.9662 |
|
61 |
+
| 0.1468 | 5.0 | 9755 | 0.1190 | 0.9399 | 0.9765 | 0.9579 | 0.9698 |
|
62 |
+
| 0.1301 | 6.0 | 11706 | 0.1028 | 0.9540 | 0.9744 | 0.9641 | 0.9737 |
|
63 |
+
| 0.1157 | 7.0 | 13657 | 0.0841 | 0.9610 | 0.9788 | 0.9698 | 0.9782 |
|
64 |
+
| 0.101 | 8.0 | 15608 | 0.0762 | 0.9702 | 0.9764 | 0.9733 | 0.9800 |
|
65 |
+
| 0.0892 | 9.0 | 17559 | 0.0621 | 0.9738 | 0.9823 | 0.9780 | 0.9835 |
|
66 |
+
| 0.0797 | 10.0 | 19510 | 0.0539 | 0.9756 | 0.9855 | 0.9805 | 0.9855 |
|
67 |
+
| 0.0734 | 11.0 | 21461 | 0.0490 | 0.9802 | 0.9848 | 0.9825 | 0.9868 |
|
68 |
+
| 0.0647 | 12.0 | 23412 | 0.0428 | 0.9826 | 0.9871 | 0.9849 | 0.9882 |
|
69 |
+
| 0.0606 | 13.0 | 25363 | 0.0400 | 0.9856 | 0.9871 | 0.9863 | 0.9890 |
|
70 |
+
| 0.0556 | 14.0 | 27314 | 0.0356 | 0.9874 | 0.9881 | 0.9877 | 0.9900 |
|
71 |
+
| 0.0506 | 15.0 | 29265 | 0.0334 | 0.9891 | 0.9896 | 0.9893 | 0.9907 |
|
72 |
+
| 0.0471 | 16.0 | 31216 | 0.0292 | 0.9902 | 0.9910 | 0.9906 | 0.9917 |
|
73 |
+
| 0.0442 | 17.0 | 33167 | 0.0270 | 0.9913 | 0.9915 | 0.9914 | 0.9923 |
|
74 |
+
| 0.0406 | 18.0 | 35118 | 0.0246 | 0.9924 | 0.9931 | 0.9928 | 0.9931 |
|
75 |
+
| 0.0383 | 19.0 | 37069 | 0.0230 | 0.9935 | 0.9935 | 0.9935 | 0.9936 |
|
76 |
+
| 0.0354 | 20.0 | 39020 | 0.0209 | 0.9944 | 0.9942 | 0.9943 | 0.9942 |
|
77 |
+
| 0.0337 | 21.0 | 40971 | 0.0204 | 0.9950 | 0.9942 | 0.9946 | 0.9943 |
|
78 |
+
| 0.0316 | 22.0 | 42922 | 0.0183 | 0.9956 | 0.9952 | 0.9954 | 0.9949 |
|
79 |
+
| 0.0302 | 23.0 | 44873 | 0.0177 | 0.9960 | 0.9954 | 0.9957 | 0.9951 |
|
80 |
+
| 0.0297 | 24.0 | 46824 | 0.0171 | 0.9961 | 0.9957 | 0.9959 | 0.9953 |
|
81 |
+
| 0.0284 | 25.0 | 48775 | 0.0170 | 0.9963 | 0.9957 | 0.9960 | 0.9953 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.28.0
|
87 |
+
- Pytorch 2.0.1+cu118
|
88 |
+
- Datasets 2.14.5
|
89 |
+
- Tokenizers 0.13.3
|