File size: 21,647 Bytes
269fa8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
# ==========================================================
# Utility functions
# ==========================================================
import os
from scipy.interpolate import CubicSpline, PchipInterpolator, Akima1DInterpolator
import numpy as np
import math
import matplotlib.pyplot as plt
from Bio.PDB import PDBParser
from Bio.PDB.DSSP import DSSP
from Bio.PDB import PDBList
import torch
from einops import rearrange
import esm
# =========================================================
# create a folder path if not exist
def create_path(this_path):
if not os.path.exists(this_path):
print('Creating the given path...')
os.mkdir (this_path)
path_stat = 1
print('Done.')
else:
print('The given path already exists!')
path_stat = 2
return path_stat
# ==========================================================
# measure the model size
def params (model):
pytorch_total_params = sum(p.numel() for p in model.parameters())
pytorch_total_params_trainable = sum(p.numel() for p in model.parameters() if p.requires_grad)
print ("Total parameters: ", pytorch_total_params," trainable parameters: ", pytorch_total_params_trainable)
# ==========================================================
# initialization function for dict for models
def prepare_UNet_keys(write_dict):
# if not setted, using the default
Full_Keys=['dim', 'text_embed_dim', 'num_resnet_blocks', 'cond_dim', 'num_image_tokens', 'num_time_tokens', 'learned_sinu_pos_emb_dim', 'out_dim', 'dim_mults', 'cond_images_channels', 'channels', 'channels_out', 'attn_dim_head', 'attn_heads', 'ff_mult', 'lowres_cond', 'layer_attns', 'layer_attns_depth', 'layer_attns_add_text_cond', 'attend_at_middle', 'layer_cross_attns', 'use_linear_attn', 'use_linear_cross_attn', 'cond_on_text', 'max_text_len', 'init_dim', 'resnet_groups', 'init_conv_kernel_size', 'init_cross_embed', 'init_cross_embed_kernel_sizes', 'cross_embed_downsample', 'cross_embed_downsample_kernel_sizes', 'attn_pool_text', 'attn_pool_num_latents', 'dropout', 'memory_efficient', 'init_conv_to_final_conv_residual', 'use_global_context_attn', 'scale_skip_connection', 'final_resnet_block', 'final_conv_kernel_size', 'cosine_sim_attn', 'self_cond', 'combine_upsample_fmaps', 'pixel_shuffle_upsample', 'beginning_and_final_conv_present']
# initialization
PKeys={}
for key in Full_Keys:
PKeys[key]=None
# modify if keys are provided
for write_key in write_dict.keys():
if write_key in PKeys.keys():
PKeys[write_key]=write_dict[write_key]
else:
print("Wrong key found: ", write_key)
return PKeys
def prepare_ModelB_keys(write_dict):
Full_Keys=['timesteps', 'dim', 'pred_dim', 'loss_type', 'elucidated', 'padding_idx', 'cond_dim', 'text_embed_dim', 'input_tokens', 'sequence_embed', 'embed_dim_position', 'max_text_len', 'cond_images_channels', 'max_length', 'device']
# initialization
PKeys={}
for key in Full_Keys:
PKeys[key]=None
# modify if keys are provided
for write_key in write_dict.keys():
if write_key in PKeys.keys():
PKeys[write_key]=write_dict[write_key]
else:
print("Wrong key found: ", write_key)
return PKeys
def modify_keys(old_dict,write_dict):
new_dict = old_dict.copy()
for w_key in write_dict.keys():
if w_key in old_dict.keys():
new_dict[w_key]=write_dict[w_key]
else:
print("Alien key found: ", w_key)
return new_dict
# ==========================================================
# mix two NForce record for a given AA length
# ==========================================================
def mixing_two_FORCE_for_AA_Len(NGap1,Force1,NGap2,Force2,LenAA,mix_fac):
N = np.amax([len(NGap1), len(NGap2)])
N_Base = math.ceil(N*2)
fun_PI_0 = PchipInterpolator(NGap1,Force1)
fun_PI_1 = PchipInterpolator(NGap2,Force2)
xx=np.linspace(0,1,N_Base)
yy=fun_PI_0(xx)*mix_fac+fun_PI_1(xx)*(1-mix_fac)
fun_PI = PchipInterpolator(xx,yy)
# discrete result
x1=np.linspace(0,1,LenAA+1)
y1=fun_PI(x1)
return fun_PI, x1, y1
# =========================================================
#
# =========================================================
def get_Model_A_error (fname, cond, plotit=True, ploterror=False):
sec_structure,sec_structure_3state, sequence=get_DSSP_result (fname)
sscount=[]
length = len (sec_structure)
sscount.append (sec_structure.count('H')/length)
sscount.append (sec_structure.count('E')/length)
sscount.append (sec_structure.count('T')/length)
sscount.append (sec_structure.count('~')/length)
sscount.append (sec_structure.count('B')/length)
sscount.append (sec_structure.count('G')/length)
sscount.append (sec_structure.count('I')/length)
sscount.append (sec_structure.count('S')/length)
sscount=np.asarray (sscount)
error=np.abs(sscount-cond)
print ("Abs error per SS structure type (H, E, T, ~, B, G, I S): ", error)
if ploterror:
fig, ax = plt.subplots(1, 1, figsize=(6,3))
plt.plot (error, 'o-', label='Error over SS type')
plt.legend()
plt.ylabel ('SS content')
plt.show()
x=np.linspace (0, 7, 8)
sslabels=['H','E','T','~','B','G','I','S']
fig, ax = plt.subplots(1, 1, figsize=(6,3))
ax.bar(x-0.15, cond, width=0.3, color='b', align='center')
ax.bar(x+0.15, sscount, width=0.3, color='r', align='center')
ax.set_ylim([0, 1])
plt.xticks(range(len(sslabels)), sslabels, size='medium')
plt.legend (['GT','Prediction'])
plt.ylabel ('SS content')
plt.show()
######################## 3 types
sscount=[]
length = len (sec_structure)
sscount.append (sec_structure_3state.count('H')/length)
sscount.append (sec_structure_3state.count('E')/length)
sscount.append (sec_structure_3state.count('~')/length)
cond_p=[np.sum([cond[0],cond[5], cond[6]]), np.sum ([cond[1], cond[4]]), np.sum([cond[2],cond[3],cond[7]]) ]
print ("cond 3type: ",cond_p)
sscount=np.asarray (sscount)
error3=np.abs(sscount-cond_p)
print ("Abs error per 3-type SS structure type (C, H, E): ", error)
if ploterror:
fig, ax = plt.subplots(1, 1, figsize=(6,3))
plt.plot (error3, 'o-', label='Error over SS type')
plt.legend()
plt.ylabel ('SS content')
plt.show()
x=np.linspace (0,2, 3)
sslabels=['H','E', '~' ]
#ax = plt.subplot(111, figsize=(4,4))
fig, ax = plt.subplots(1, 1, figsize=(6,3))
ax.bar(x-0.15, cond_p, width=0.3, color='b', align='center')
ax.bar(x+0.15, sscount, width=0.3, color='r', align='center')
ax.set_ylim([0, 1])
plt.xticks(range(len(sslabels)), sslabels, size='medium')
plt.legend (['GT','Prediction'])
plt.ylabel ('SS content')
plt.show()
return error
def get_DSSP_result (fname):
pdb_list = [fname]
# parse structure
p = PDBParser()
for i in pdb_list:
structure = p.get_structure(i, fname)
# use only the first model
model = structure[0]
# calculate DSSP
dssp = DSSP(model, fname, file_type='PDB' )
# extract sequence and secondary structure from the DSSP tuple
sequence = ''
sec_structure = ''
for z in range(len(dssp)):
a_key = list(dssp.keys())[z]
sequence += dssp[a_key][1]
sec_structure += dssp[a_key][2]
#print(i)
#print(sequence)
#print(sec_structure)
#
# The DSSP codes for secondary structure used here are:
# ===== ====
# Code Structure
# ===== ====
# H Alpha helix (4-12)
# B Isolated beta-bridge residue
# E Strand
# G 3-10 helix
# I Pi helix
# T Turn
# S Bend
# ~ None
# ===== ====
#
sec_structure = sec_structure.replace('-', '~')
sec_structure_3state=sec_structure
# if desired, convert DSSP's 8-state assignments into 3-state [C - coil, E - extended (beta-strand), H - helix]
sec_structure_3state = sec_structure_3state.replace('H', 'H') #0
sec_structure_3state = sec_structure_3state.replace('E', 'E')
sec_structure_3state = sec_structure_3state.replace('T', '~')
sec_structure_3state = sec_structure_3state.replace('~', '~')
sec_structure_3state = sec_structure_3state.replace('B', 'E')
sec_structure_3state = sec_structure_3state.replace('G', 'H') #5
sec_structure_3state = sec_structure_3state.replace('I', 'H') #6
sec_structure_3state = sec_structure_3state.replace('S', '~')
return sec_structure,sec_structure_3state, sequence
def string_diff (seq1, seq2):
return sum(1 for a, b in zip(seq1, seq2) if a != b) + abs(len(seq1) - len(seq2))
# ============================================================
# on esm, rebuild AA sequence from embedding
# ============================================================
import esm
def decode_one_ems_token_rec(this_token, esm_alphabet):
# print( (this_token==esm_alphabet.cls_idx).nonzero(as_tuple=True)[0] )
# print( (this_token==esm_alphabet.eos_idx).nonzero(as_tuple=True)[0] )
# print( (this_token==100).nonzero(as_tuple=True)[0]==None )
id_b=(this_token==esm_alphabet.cls_idx).nonzero(as_tuple=True)[0]
id_e=(this_token==esm_alphabet.eos_idx).nonzero(as_tuple=True)[0]
if len(id_e)==0:
# no ending for this one, so id_e points to the end
id_e=len(this_token)
else:
id_e=id_e[0]
if len(id_b)==0:
id_b=0
else:
id_b=id_b[-1]
this_seq = []
# this_token_used = []
for ii in range(id_b+1,id_e,1):
# this_token_used.append(this_token[ii])
this_seq.append(
esm_alphabet.get_tok(this_token[ii])
)
this_seq = "".join(this_seq)
# print(this_seq)
# print(len(this_seq))
# # print(this_token[id_b+1:id_e])
return this_seq
def decode_many_ems_token_rec(batch_tokens, esm_alphabet):
rev_y_seq = []
for jj in range(len(batch_tokens)):
# do for one seq: this_seq
this_seq = decode_one_ems_token_rec(
batch_tokens[jj], esm_alphabet
)
rev_y_seq.append(this_seq)
return rev_y_seq
# ++ for omegafold sequence: treat unknows as X
uncomm_idx_list = [0, 1, 2, 3, 24, 25, 26, 27, 28, 29, 30, 31, 32]
# this one decide the beginning and ending AUTOMATICALLY
def decode_one_ems_token_rec_for_folding(
this_token,
this_logits,
esm_alphabet,
esm_model):
# print( (this_token==esm_alphabet.cls_idx).nonzero(as_tuple=True)[0] )
# print( (this_token==esm_alphabet.eos_idx).nonzero(as_tuple=True)[0] )
# print( (this_token==100).nonzero(as_tuple=True)[0]==None )
# 1. use this_token to find the beginning and ending
# 2. to logits to generate tokens that ONLY contains foldable AAs
#
id_b_0=(this_token==esm_alphabet.cls_idx).nonzero(as_tuple=True)[0]
id_e_0=(this_token==esm_alphabet.eos_idx).nonzero(as_tuple=True)[0]
# ------------------------------------------------------------------
# principle:
# 1. begin at 0th
# 2. end as soon as possible: relay on that the first endding is learned
id_b = 0
#
if len(id_e_0)==0:
id_e=len(this_token)
else:
id_e=id_e_0[0]
# correct if needed
if id_e<=id_b+1:
if len(id_e_0)>1:
id_e=id_e_0[1]
else:
id_e=len(this_token)
# -------------------------------------------------------------------
# # ------------------------------------------------------------------
# # not perfect
# # principle:
# # 1. begin as late as possible
# # 2. end as soon as possible
# #
# if len(id_b_0)==0:
# id_b=0
# else:
# id_b=id_b_0[-1]
# # so, beginning is set
# # looking for the nearest ending signal if we can find one
# # 1. pick those in id_e that id_b<id_e
# id_e_1=[]
# for this_e in id_e_0:
# if this_e>id_b:
# id_e_1.append(this_e)
# # 2. check what we find
# if len(id_e_1)==0:
# # no endding, id_e points to the end
# id_e=len(this_token)
# else:
# # otherwise, find endding point and pick the first one
# id_e=id_e_1[0]
# # 3. if id_b+1==id_e, we still get nothing. So, this is a fake fix
# if id_e==id_b+1:
# if len(id_e_1)>1:
# id_e=id_e_1[1]
# else:
# id_e=len(this_token)
# # --------------------------------------------------------------------
# if id_b>id_e:
# for debug:
print("start at: ", id_b)
print("end at: ", id_e)
# along the sequence, we pick only index [id_b+1:id_e]. This exclude the <cls> and <eos>
use_logits = this_logits[id_b+1:id_e] # (seq_len_eff, token_len)
use_logits[:,uncomm_idx_list]=-float('inf')
use_token = use_logits.max(1).indices
# print(use_token)
this_seq = []
# this_token_used = []
# for ii in range(id_b+1,id_e,1):
for ii in range(len(use_token)):
# this_token_used.append(this_token[ii])
# print(esm_alphabet.get_tok(use_token[ii]))
# print(ii)
this_seq.append(
esm_alphabet.get_tok(use_token[ii])
)
this_seq = "".join(this_seq)
# # generate a foldable sequece
# # map all uncommon ones into X/24
# for idx, one_token in enumerate( this_token_used):
# find_it=0
# for this_uncomm in uncomm_idx_list:
# find_id=find_id+(this_uncomm==one_token)
# #
# if find_id>0:
# this_token_used[idx]=24 # 24 means X
# # translate token into sequences
# this_seq_foldable=[]
# for one_token in this_token_used:
# this_seq_foldable.append(
# esm_alphabet.get_tok(one_token)
# )
# # print(this_seq)
# # print(len(this_seq))
# # # print(this_token[id_b+1:id_e])
# return this_seq, this_seq_foldable
return this_seq
def decode_many_ems_token_rec_for_folding(
batch_tokens,
batch_logits,
esm_alphabet,
esm_model):
rev_y_seq = []
for jj in range(len(batch_tokens)):
# do for one seq: this_seq
this_seq = decode_one_ems_token_rec_for_folding(
batch_tokens[jj],
batch_logits[jj],
esm_alphabet,
esm_model,
)
rev_y_seq.append(this_seq)
return rev_y_seq
def convert_into_logits(esm_model, result):
repre=rearrange(
result,
'b l c -> b c l'
)
with torch.no_grad():
logits=esm_model.lm_head(repre)
return logits
# this one return the unmodified tokens and logits
def convert_into_tokens(model, result, pLM_Model_Name):
if pLM_Model_Name=='esm2_t33_650M_UR50D' \
or pLM_Model_Name=='esm2_t36_3B_UR50D' \
or pLM_Model_Name=='esm2_t30_150M_UR50D' \
or pLM_Model_Name=='esm2_t12_35M_UR50D' :
repre=rearrange(
result,
'b c l -> b l c'
)
with torch.no_grad():
logits=model.lm_head(repre) # (b, l, token_dim)
tokens=logits.max(2).indices # (b,l)
else:
print("pLM_Model is not defined...")
return tokens,logits
# ++
def convert_into_tokens_using_prob(prob_result, pLM_Model_Name):
if pLM_Model_Name=='esm2_t33_650M_UR50D' \
or pLM_Model_Name=='esm2_t36_3B_UR50D' \
or pLM_Model_Name=='esm2_t30_150M_UR50D' \
or pLM_Model_Name=='esm2_t12_35M_UR50D' :
repre=rearrange(
prob_result,
'b c l -> b l c'
)
# with torch.no_grad():
# logits=model.lm_head(repre) # (b, l, token_dim)
logits = repre
tokens=logits.max(2).indices # (b,l)
else:
print("pLM_Model is not defined...")
return tokens,logits
#
def read_mask_from_input(
# consider different type of inputs
# raw data: x_data (sequences)
# tokenized: x_data_tokenized
tokenized_data=None, # X_train_batch,
mask_value=None,
seq_data=None,
max_seq_length=None,
):
# # old:
# mask = X_train_batch!=mask_value
# new
if seq_data!=None:
# use the real sequence length to create mask
n_seq = len(seq_data)
mask = torch.zeros(n_seq, max_seq_length)
for ii in range(n_seq):
this_len = len(seq_data[ii])
mask[ii,1:1+this_len]=1
mask = mask==1
#
elif tokenized_data!=None:
n_seq = len(tokenized_data)
mask = tokenized_data!=mask_value
# fix the beginning part: 0+content+00, not 00+content+00
for ii in range(n_seq):
# get all nonzero index
id_1 = (mask[ii]==True).nonzero(as_tuple=True)[0]
# correction for ForcPath,
# pick up 0.0 for zero-force padding at the beginning
mask[ii,1:id_1[0]]=True
return mask
# ++ read one length
def read_one_len_from_padding_vec(
in_np_array,
padding_val=0.0,
):
mask = in_np_array!=padding_val
id_list_all_1 = mask.nonzero()[0]
vec_len = id_list_all_1[-1]+1
return vec_len
# this one decide the beginning and ending using mask
def decode_one_ems_token_rec_for_folding_with_mask(
this_token,
this_logits,
esm_alphabet,
esm_model,
this_mask,
):
# translate all logits into tokens then screen the unmaksed part
# along the sequence, we pick only index [id_b+1:id_e]. This exclude the <cls> and <eos>
use_logits = this_logits # (seq_len_eff, token_len)
use_logits[:,uncomm_idx_list]=-float('inf')
use_token = use_logits.max(1).indices
#
print(use_token)
use_token = use_token[this_mask==True]
# print(use_token)
this_seq = []
# this_token_used = []
# for ii in range(id_b+1,id_e,1):
for ii in range(len(use_token)):
# this_token_used.append(this_token[ii])
# print(esm_alphabet.get_tok(use_token[ii]))
# print(ii)
this_seq.append(
esm_alphabet.get_tok(use_token[ii])
)
this_seq = "".join(this_seq)
return this_seq
def decode_many_ems_token_rec_for_folding_with_mask(
batch_tokens,
batch_logits,
esm_alphabet,
esm_model,
mask):
rev_y_seq = []
for jj in range(len(batch_tokens)):
# do for one seq: this_seq
this_seq = decode_one_ems_token_rec_for_folding_with_mask(
batch_tokens[jj],
batch_logits[jj],
esm_alphabet,
esm_model,
mask[jj]
)
rev_y_seq.append(this_seq)
return rev_y_seq
# =====================================================
# create new input condition for ForcPath case
# =====================================================
from scipy import interpolate
def interpolate_and_resample_ForcPath(y0,seq_len1):
seq_len0=len(y0)-1
x0=np.arange(0., 1.+1./seq_len0, 1./seq_len0)
f=interpolate.interp1d(x0,y0)
#
x1=np.arange(0., 1.+1./seq_len1, 1./seq_len1)
y1=f(x1)
#
resu = {}
resu['y1']=y1
resu['x1']=x1
resu['x0']=x0
return resu
#
def mix_two_ForcPath(y0,y1,seq_len2):
seq_len0=len(y0)-1
x0=np.arange(0., 1.+1./seq_len0, 1./seq_len0)
seq_len1=len(y1)-1
x1=np.arange(0., 1.+1./seq_len1, 1./seq_len1)
f0=interpolate.interp1d(x0,y0)
f1=interpolate.interp1d(x1,y1)
#
x2=np.arange(0., 1.+1./seq_len2, 1./seq_len2)
y2=(f0(x2)+f1(x2))/1.
#
resu={}
resu['y2']=y2
resu['x2']=x2
resu['x1']=x1
resu['x0']=x0
return resu
#
# =====================================================
# load in function for language model
# =====================================================
import esm
def load_in_pLM(pLM_Model_Name,device):
#
# ++ for pLM
if pLM_Model_Name=='trivial':
pLM_Model=None
esm_alphabet=None
len_toks=0
esm_layer=0
elif pLM_Model_Name=='esm2_t33_650M_UR50D':
# dim: 1280
esm_layer=33
pLM_Model, esm_alphabet = esm.pretrained.esm2_t33_650M_UR50D()
len_toks=len(esm_alphabet.all_toks)
pLM_Model.eval()
pLM_Model. to(device)
elif pLM_Model_Name=='esm2_t36_3B_UR50D':
# dim: 2560
esm_layer=36
pLM_Model, esm_alphabet = esm.pretrained.esm2_t36_3B_UR50D()
len_toks=len(esm_alphabet.all_toks)
pLM_Model.eval()
pLM_Model. to(device)
elif pLM_Model_Name=='esm2_t30_150M_UR50D':
# dim: 640
esm_layer=30
pLM_Model, esm_alphabet = esm.pretrained.esm2_t30_150M_UR50D()
len_toks=len(esm_alphabet.all_toks)
pLM_Model.eval()
pLM_Model. to(device)
elif pLM_Model_Name=='esm2_t12_35M_UR50D':
# dim: 480
esm_layer=12
pLM_Model, esm_alphabet = esm.pretrained.esm2_t12_35M_UR50D()
len_toks=len(esm_alphabet.all_toks)
pLM_Model.eval()
pLM_Model. to(device)
else:
print("pLM model is missing...")
return pLM_Model, esm_alphabet, esm_layer, len_toks |