File size: 11,119 Bytes
269fa8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 |
import os
import sys
import pandas as pd
import torch
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import linecache
import re
from Bio.PDB import PDBParser, PDBIO
import math
from Bio.PDB import PDBIO
from Bio.PDB import PDBParser
from Bio.PDB import Superimposer
from Bio.PDB.vectors import calc_angle, calc_dihedral
import Bio.PDB.vectors
#
from Bio.PDB.DSSP import DSSP # add try a self-made one
# from Bio.PDB.DSSP_SelfMade import DSSP_SelfMade # add try a self-made one
resdict = {
"ALA": "A",
"CYS": "C",
"ASP": "D",
"GLU": "E",
"PHE": "F",
"GLY": "G",
"HIS": "H",
"ILE": "I",
"LYS": "K",
"LEU": "L",
"MET": "M",
"ASN": "N",
"PRO": "P",
"GLN": "Q",
"ARG": "R",
"SER": "S",
"THR": "T",
"VAL": "V",
"TRP": "W",
"TYR": "Y",
}
# using those from force field file
#
resdict = {
"ALA": "A",
"ARG": "R",
"ASN": "N",
"ASP": "D",
"CYS": "C",
"GLN": "Q",
"GLU": "E",
"GLY": "G",
"HIS": "H",
"HSD": "H",
"HSE": "H",
"HSP": "H",
"ILE": "I",
"LYS": "K",
"LEU": "L",
"MET": "M",
"PHE": "F",
"PRO": "P",
"SER": "S",
"THR": "T",
"TRP": "W",
"TYR": "Y",
"VAL": "V",
}
#
# SMD setup
SMD_Vel = 0.0001 # A/timestep
# step_data * SMD_Vel = pulling_dist
def collect_geo_of_backbone(chain):
prev = "0"
rad = 180.0 / math.pi
# result
resu = {"AA":[],\
"Bond_CA_N":[],"Bond_CA_C":[],"Bond_N_C1":[],\
"Angl_CA1_C1_N":[],"Angl_C1_N_CA":[],"Angl_N_CA_C":[],\
"Dihe_PHI":[],"Dihe_PSI":[],"Dihe_OME":[]}
#
for res in chain:
if res.get_resname() in resdict.keys():
# seq += resdict[res.get_resname()]
resu["AA"].append(resdict[res.get_resname()])
# ToDo, check whether this res has N, CA, C
# if not (res.has_key("N") and res.has_key("NA") and res.has_key("C")):
# print("Key backbone atom is missing")
if prev == "0":
# 1st AA:
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
# update the key
prev = "1"
else:
n1 = N_prev.get_vector()
ca1 = CA_prev.get_vector()
c1 = C_prev.get_vector()
# print(res)
C_curr = res["C"]
N_curr = res["N"]
CA_curr = res["CA"]
# get the coordinates
c = C_curr.get_vector()
n = N_curr.get_vector()
ca = CA_curr.get_vector()
# get the measurement
ca1_c1_n_ThisAngle = calc_angle(ca1, c1, n)*rad
c1_n_ca_ThisAngle = calc_angle(c1, n, ca)*rad
n_ca_c_ThisAngle = calc_angle(n, ca, c)*rad
ca_n_ThisBond = CA_curr - N_curr
ca_c_ThisBond = CA_curr - C_curr
n_c1_ThisBond = N_curr - C_prev
ThisPsi = calc_dihedral(n1, ca1, c1, n) # degree
ThisOmega = calc_dihedral(ca1, c1, n, ca) # degree
ThisPhi = calc_dihedral(c1, n, ca, c) # degree
# store the results
# n1-ca1-c1--n-ca-c--n2-ca2-c2
resu["Bond_CA_N"].append(ca_n_ThisBond)
resu["Bond_CA_C"].append(ca_c_ThisBond)
resu["Bond_N_C1"].append(n_c1_ThisBond) # peptide bond
#
resu["Angl_CA1_C1_N"].append(ca1_c1_n_ThisAngle)
resu["Angl_C1_N_CA"].append(c1_n_ca_ThisAngle)
resu["Angl_N_CA_C"].append(n_ca_c_ThisAngle)
#
resu["Dihe_PHI"].append(ThisPhi)
resu["Dihe_PSI"].append(ThisPsi)
resu["Dihe_OME"].append(ThisOmega)
# update the AA info
N_prev = res["N"]
CA_prev = res["CA"]
C_prev = res["C"]
# summerize the result
return resu
#
def collect_multi_chain_AA_info(pdb_file):
parser = PDBParser()
structure = parser.get_structure("sample", pdb_file)
resu_full = {"Chain":[],"AA":{}}
for chain in structure.get_chains():
this_chain_id = chain.get_id()
# print('Working on Chain ', this_chain_id)
# working on one chain; Assume there is only one chain
resu_full["Chain"].append(this_chain_id)
resu_test = collect_geo_of_backbone(chain)
resu_full["AA"][this_chain_id]=resu_test["AA"]
# can add more
return resu_full
# read one record
# plot one record ONLY in the non-empty cases
#
def get_one_force_record(ii, resu_file_name_list):
# ii = pick_file_list[i]
pdb_id = resu_file_name_list['PDB_ID'][ii]
data_one_file = resu_file_name_list['Path'][ii]+'/1_working_dir/collect_results/smd_resu.dat'
data = np.genfromtxt(data_one_file)
# print(data.shape)
# kernel = np.ones(kernel_size) / kernel_size
# focus on disp-force curve
# print('# of data point: ', data.shape[0])
disp_data = data[:,1]
force_data = data[:,7]
# + add the pulling point info
# pulling point disp
step_data = data[:,0]
setdata_one_file = resu_file_name_list['Path'][ii]+'/1_working_dir/box_dimension_after_eq.dat'
line_4 = linecache.getline(setdata_one_file, 4)
SMD_Vel = float(line_4.split()[2])
pull_data = SMD_Vel*step_data
# force_data_convolved_10 = np.convolve(force_data, kernel, mode='same')
return disp_data, force_data, pdb_id, pull_data
# collect AA from the record
def get_one_AA_record(ii, resu_file_name_list):
# ii = pick_file_list[i]
# TestProt_chain_0_after_psf.pdb
pdb_file = resu_file_name_list['Path'][ii]+'/1_working_dir/TestProt_chain_0_after_psf.pdb'
resu_full = collect_multi_chain_AA_info(pdb_file)
# Here, we assume there is only one chain in the file, which is the case for tensile test
# AA_seq = resu_full["AA"][resu_full["Chain"][0]]
AA_seq = ''.join(resu_full["AA"][resu_full["Chain"][0]])
return AA_seq
# smooth functions
def conv_one_record(force_data, kernel_size):
kernel = np.ones(kernel_size) / kernel_size
force_data_convolved = np.convolve(force_data, kernel, mode='same')
return force_data_convolved
from math import factorial
from scipy.ndimage.filters import uniform_filter1d
#
# function to smooth the data
def savitzky_golay(y, window_size, order, deriv=0, rate=1):
try:
# window_size = np.abs(np.int(window_size))
window_size = np.abs(int(window_size))
# order = np.abs(np.int(order))
order = np.abs(int(order))
except ValueError:
raise ValueError("window_size and order have to be of type int")
if window_size % 2 != 1 or window_size < 1:
raise TypeError("window_size size must be a positive odd number")
if window_size < order + 2:
raise TypeError("window_size is too small for the polynomials order")
order_range = range(order+1)
half_window = (window_size -1) // 2
# precompute coefficients
b = np.mat([[k**i for i in order_range] for k in range(-half_window, half_window+1)])
m = np.linalg.pinv(b).A[deriv] * rate**deriv * factorial(deriv)
# pad the signal at the extremes with
# values taken from the signal itself
firstvals = y[0] - np.abs( y[1:half_window+1][::-1] - y[0] )
lastvals = y[-1] + np.abs(y[-half_window-1:-1][::-1] - y[-1])
y = np.concatenate((firstvals, y, lastvals))
return np.convolve( m[::-1], y, mode='valid')
#
def read_gap_values_from_dat(file):
# line_2 = linecache.getline('r"'+file+'"', 2)
# line_3 = linecache.getline('r"'+file+'"', 3)
line_2 = linecache.getline(file, 2)
line_3 = linecache.getline(file, 3)
# get the values
ini_gap = float(line_2.split()[2])
fin_gap = float(line_3.split()[2])
return ini_gap, fin_gap
def read_one_array_from_df(one_record):
return np.array(list(map(float, one_record.split(" "))))
#
def read_string_find_max(reco):
x = read_one_array_from_df(reco)
return np.amax(x)
def read_string_find_max(reco):
x = read_one_array_from_df(reco)
return np.amax(x)
#
def cal_seq_end_gap(x):
inc_gap_arr = x['posi_data']-x['posi_data'][0]
ini_gap = x['ini_gap']
gap_arr = ini_gap+inc_gap_arr
return gap_arr
#
def cal_pull_end_gap(x):
inc_gap_arr = x['pull_data'] # -x['pull_data'][0]
ini_gap = x['ini_gap']
gap_arr = ini_gap+inc_gap_arr
return gap_arr
#
# pick the force at the unfolding of every residues
def simplify_NormPull_FORCEnF_rec(n_fold,this_seq_len,this_n_PullGap_arr,this_Force_arr):
target_pull_gap_list = [1./(this_seq_len*n_fold)*(jj+0) for jj in range(this_seq_len*n_fold)]
target_pull_gap_list.append(1.)
# retrive the force values
target_force = []
for jj in range(len(target_pull_gap_list)):
# for jj in range(10):
this_t_n_PullGap = target_pull_gap_list[jj]
if this_t_n_PullGap<this_n_PullGap_arr[0]:
this_t_F = 0.
else:
# find the neareast one
disp_arr = np.abs(this_n_PullGap_arr - this_t_n_PullGap)
pick_id = np.argmin(disp_arr)
this_t_F = this_Force_arr[pick_id]
#
target_force.append(this_t_F)
#
target_pull_gap_arr = np.array(target_pull_gap_list)
target_force_arr = np.array(target_force)
# for delivery
resu = {}
resu['sample_NormPullGap'] = target_pull_gap_arr
resu['smaple_FORCE'] = target_force_arr
return resu
# read input conditions
def read_input_model_A(file_path):
with open(file_path, 'r') as f:
txt = f.read()
nums = re.findall(r'\[([^][]+)\]', txt)
arr = np.loadtxt(nums)
# print(arr)
# print(arr[0])
return arr
def read_input_model_B(file_path):
with open(file_path, 'r') as f:
txt = f.read()
nums = re.findall(r'\[([^][]+)\]', txt)
# arr = np.loadtxt(nums)
arr = np.loadtxt( [nums[0].replace('\n','')] )
# print(arr)
# print(arr[0])
return arr
def read_one_input_arr_from_txt(file_path):
with open(file_path, 'r') as f:
txt = f.read()
nums = re.findall(r'\[([^][]+)\]', txt)
# arr = np.loadtxt(nums)
arr = np.loadtxt( [nums[0].replace('\n','')] )
# print(arr)
# print(arr[0])
return arr
# this only for this version, in folder3 it is updated
# # for folder3
# def recover_input_for_model_B(file_path, seq_len):
# raw_arr = read_one_input_arr_from_txt(file_path)
# arr = raw_arr[1:1+seq_len+1]
# return arr
# for folder2
def recover_input_for_model_B_ver2(file_path, seq_len):
raw_arr = read_one_input_arr_from_txt(file_path)
arr = raw_arr[0:0+seq_len+1]
return arr
# for folder3
def recover_input_for_model_B_ver3(file_path, seq_len):
raw_arr = read_one_input_arr_from_txt(file_path)
arr = np.zeros(seq_len+1)
arr[1:1+seq_len] = raw_arr[0:0+seq_len]
return arr |