Commit
·
f7f9895
1
Parent(s):
ba88ddd
new model
Browse files
img_demoAE.py
ADDED
|
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
########################################################################################################
|
| 2 |
+
# The RWKV Language Model - https://github.com/BlinkDL/RWKV-LM
|
| 3 |
+
########################################################################################################
|
| 4 |
+
|
| 5 |
+
import torch, types, os
|
| 6 |
+
import numpy as np
|
| 7 |
+
from PIL import Image
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
from torch.nn import functional as F
|
| 10 |
+
import torchvision as vision
|
| 11 |
+
import torchvision.transforms as transforms
|
| 12 |
+
np.set_printoptions(precision=4, suppress=True, linewidth=200)
|
| 13 |
+
print(f'loading...')
|
| 14 |
+
|
| 15 |
+
########################################################################################################
|
| 16 |
+
|
| 17 |
+
model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-201'
|
| 18 |
+
input_img = 'kodim24-modified.png'
|
| 19 |
+
|
| 20 |
+
########################################################################################################
|
| 21 |
+
|
| 22 |
+
class ToBinary(torch.autograd.Function):
|
| 23 |
+
@staticmethod
|
| 24 |
+
def forward(ctx, x):
|
| 25 |
+
return torch.floor(x + 0.5) # no need for noise when we have plenty of data
|
| 26 |
+
|
| 27 |
+
@staticmethod
|
| 28 |
+
def backward(ctx, grad_output):
|
| 29 |
+
return grad_output.clone() # pass-through
|
| 30 |
+
|
| 31 |
+
class R_ENCODER(nn.Module):
|
| 32 |
+
def __init__(self, args):
|
| 33 |
+
super().__init__()
|
| 34 |
+
self.args = args
|
| 35 |
+
dd = 8
|
| 36 |
+
self.Bxx = nn.BatchNorm2d(dd*64)
|
| 37 |
+
|
| 38 |
+
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
| 39 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 40 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 41 |
+
|
| 42 |
+
self.B00 = nn.BatchNorm2d(dd*4)
|
| 43 |
+
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 44 |
+
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 45 |
+
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 46 |
+
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 47 |
+
|
| 48 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
| 49 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 50 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 51 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 52 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 53 |
+
|
| 54 |
+
self.B20 = nn.BatchNorm2d(dd*64)
|
| 55 |
+
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 56 |
+
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 57 |
+
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 58 |
+
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 59 |
+
|
| 60 |
+
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
| 61 |
+
|
| 62 |
+
def forward(self, img):
|
| 63 |
+
ACT = F.mish
|
| 64 |
+
|
| 65 |
+
x = self.CIN(img)
|
| 66 |
+
xx = self.Bxx(F.pixel_unshuffle(x, 8))
|
| 67 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 68 |
+
|
| 69 |
+
x = F.pixel_unshuffle(x, 2)
|
| 70 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 71 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 72 |
+
|
| 73 |
+
x = F.pixel_unshuffle(x, 2)
|
| 74 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 75 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 76 |
+
|
| 77 |
+
x = F.pixel_unshuffle(x, 2)
|
| 78 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 79 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 80 |
+
|
| 81 |
+
x = self.COUT(x + xx)
|
| 82 |
+
return torch.sigmoid(x)
|
| 83 |
+
|
| 84 |
+
class R_DECODER(nn.Module):
|
| 85 |
+
def __init__(self, args):
|
| 86 |
+
super().__init__()
|
| 87 |
+
self.args = args
|
| 88 |
+
dd = 8
|
| 89 |
+
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
|
| 90 |
+
|
| 91 |
+
self.B00 = nn.BatchNorm2d(dd*64)
|
| 92 |
+
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 93 |
+
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 94 |
+
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 95 |
+
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 96 |
+
|
| 97 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
| 98 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 99 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 100 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 101 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 102 |
+
|
| 103 |
+
self.B20 = nn.BatchNorm2d(dd*4)
|
| 104 |
+
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 105 |
+
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 106 |
+
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 107 |
+
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 108 |
+
|
| 109 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 110 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 111 |
+
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
| 112 |
+
|
| 113 |
+
def forward(self, code):
|
| 114 |
+
ACT = F.mish
|
| 115 |
+
x = self.CIN(code)
|
| 116 |
+
|
| 117 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 118 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 119 |
+
x = F.pixel_shuffle(x, 2)
|
| 120 |
+
|
| 121 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 122 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 123 |
+
x = F.pixel_shuffle(x, 2)
|
| 124 |
+
|
| 125 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 126 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 127 |
+
x = F.pixel_shuffle(x, 2)
|
| 128 |
+
|
| 129 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 130 |
+
x = self.COUT(x)
|
| 131 |
+
|
| 132 |
+
return torch.sigmoid(x)
|
| 133 |
+
|
| 134 |
+
########################################################################################################
|
| 135 |
+
|
| 136 |
+
print(f'building model...')
|
| 137 |
+
args = types.SimpleNamespace()
|
| 138 |
+
args.my_img_bit = 13
|
| 139 |
+
encoder = R_ENCODER(args).eval().cuda()
|
| 140 |
+
decoder = R_DECODER(args).eval().cuda()
|
| 141 |
+
|
| 142 |
+
zpow = torch.tensor([2**i for i in range(0,13)]).reshape(13,1,1).cuda().long()
|
| 143 |
+
|
| 144 |
+
encoder.load_state_dict(torch.load(f'{model_prefix}-E.pth'))
|
| 145 |
+
decoder.load_state_dict(torch.load(f'{model_prefix}-D.pth'))
|
| 146 |
+
|
| 147 |
+
########################################################################################################
|
| 148 |
+
|
| 149 |
+
print(f'test image...')
|
| 150 |
+
img_transform = transforms.Compose([
|
| 151 |
+
transforms.PILToTensor(),
|
| 152 |
+
transforms.ConvertImageDtype(torch.float),
|
| 153 |
+
transforms.Resize((224, 224))
|
| 154 |
+
])
|
| 155 |
+
|
| 156 |
+
with torch.no_grad():
|
| 157 |
+
img = img_transform(Image.open(input_img)).unsqueeze(0).cuda()
|
| 158 |
+
z = encoder(img)
|
| 159 |
+
z = ToBinary.apply(z)
|
| 160 |
+
|
| 161 |
+
zz = torch.sum(z.squeeze().long() * zpow, dim=0)
|
| 162 |
+
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
|
| 163 |
+
|
| 164 |
+
out = decoder(z)
|
| 165 |
+
vision.utils.save_image(out, f"{input_img.split('.')[0]}-out-13bit.png")
|
kodim24-modified-out-13bit.png
ADDED
|
kodim24-modified.png
ADDED
|
out-v7c_d8_256-224-13bit-OB32x0.5-201-D.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:917ddad270353caf0243dbd09c2257414b9cb599ee43fe1b41b8e7af49bf03b8
|
| 3 |
+
size 25068760
|
out-v7c_d8_256-224-13bit-OB32x0.5-201-E.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:65933944a19a00241ebfecce4e4b5e9bd2d7f1ac7d10f447b6b8c3e73a92093a
|
| 3 |
+
size 25076297
|