Commit
Β·
502d2e6
1
Parent(s):
76efecd
new model
Browse files- img_demoAE.py +182 -102
- img_test/{genshin-out-13bit.png β genshin-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/genshin-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim14-modified-out-13bit.png β kodim14-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim14-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim19-modified-out-13bit.png β kodim19-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim19-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{kodim24-modified-out-13bit.png β kodim24-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/kodim24-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- img_test/{lena-out-13bit.png β lena-out-v7c_d8_256-224-13bit-OB32x0.5-745.png} +0 -0
- img_test/lena-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png +0 -0
- out-v7d_d16_512-224-13bit-OB32x0.5-2487-D.pth +3 -0
- out-v7d_d16_512-224-13bit-OB32x0.5-2487-E.pth +3 -0
img_demoAE.py
CHANGED
|
@@ -14,7 +14,8 @@ print(f'loading...')
|
|
| 14 |
|
| 15 |
########################################################################################################
|
| 16 |
|
| 17 |
-
model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-745'
|
|
|
|
| 18 |
input_imgs = ['lena.png', 'genshin.png', 'kodim14-modified.png', 'kodim19-modified.png', 'kodim24-modified.png']
|
| 19 |
device = 'cpu' # cpu cuda
|
| 20 |
|
|
@@ -29,108 +30,187 @@ class ToBinary(torch.autograd.Function):
|
|
| 29 |
def backward(ctx, grad_output):
|
| 30 |
return grad_output.clone() # pass-through
|
| 31 |
|
| 32 |
-
class
|
| 33 |
-
def __init__(self,
|
| 34 |
super().__init__()
|
| 35 |
-
self.
|
| 36 |
-
|
| 37 |
-
self.
|
| 38 |
-
|
| 39 |
-
self.
|
| 40 |
-
|
| 41 |
-
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 42 |
-
|
| 43 |
-
self.B00 = nn.BatchNorm2d(dd*4)
|
| 44 |
-
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 45 |
-
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 46 |
-
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 47 |
-
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 48 |
-
|
| 49 |
-
self.B10 = nn.BatchNorm2d(dd*16)
|
| 50 |
-
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 51 |
-
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 52 |
-
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 53 |
-
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 54 |
-
|
| 55 |
-
self.B20 = nn.BatchNorm2d(dd*64)
|
| 56 |
-
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 57 |
-
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 58 |
-
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 59 |
-
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 60 |
-
|
| 61 |
-
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
| 62 |
-
|
| 63 |
-
def forward(self, img):
|
| 64 |
ACT = F.mish
|
| 65 |
-
|
| 66 |
-
x = self.
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
|
| 135 |
########################################################################################################
|
| 136 |
|
|
@@ -165,4 +245,4 @@ for input_img in input_imgs:
|
|
| 165 |
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
|
| 166 |
|
| 167 |
out = decoder(z)
|
| 168 |
-
vision.utils.save_image(out, f"img_test/{input_img.split('.')[0]}-
|
|
|
|
| 14 |
|
| 15 |
########################################################################################################
|
| 16 |
|
| 17 |
+
# model_prefix = 'out-v7c_d8_256-224-13bit-OB32x0.5-745'
|
| 18 |
+
model_prefix = 'out-v7d_d16_512-224-13bit-OB32x0.5-2487'
|
| 19 |
input_imgs = ['lena.png', 'genshin.png', 'kodim14-modified.png', 'kodim19-modified.png', 'kodim24-modified.png']
|
| 20 |
device = 'cpu' # cpu cuda
|
| 21 |
|
|
|
|
| 30 |
def backward(ctx, grad_output):
|
| 31 |
return grad_output.clone() # pass-through
|
| 32 |
|
| 33 |
+
class ResBlock(nn.Module):
|
| 34 |
+
def __init__(self, c_x, c_hidden):
|
| 35 |
super().__init__()
|
| 36 |
+
self.B0 = nn.BatchNorm2d(c_x)
|
| 37 |
+
self.C0 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
| 38 |
+
self.C1 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
| 39 |
+
self.C2 = nn.Conv2d(c_x, c_hidden, kernel_size=3, padding=1)
|
| 40 |
+
self.C3 = nn.Conv2d(c_hidden, c_x, kernel_size=3, padding=1)
|
| 41 |
+
def forward(self, x):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
ACT = F.mish
|
| 43 |
+
x = x + self.C1(ACT(self.C0(ACT(self.B0(x)))))
|
| 44 |
+
x = x + self.C3(ACT(self.C2(x)))
|
| 45 |
+
return x
|
| 46 |
+
|
| 47 |
+
if model_prefix == 'out-v7c_d8_256-224-13bit-OB32x0.5-745':
|
| 48 |
+
class R_ENCODER(nn.Module):
|
| 49 |
+
def __init__(self, args):
|
| 50 |
+
super().__init__()
|
| 51 |
+
self.args = args
|
| 52 |
+
dd = 8
|
| 53 |
+
self.Bxx = nn.BatchNorm2d(dd*64)
|
| 54 |
+
|
| 55 |
+
self.CIN = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
| 56 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 57 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 58 |
+
|
| 59 |
+
self.B00 = nn.BatchNorm2d(dd*4)
|
| 60 |
+
self.C00 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 61 |
+
self.C01 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 62 |
+
self.C02 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 63 |
+
self.C03 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 64 |
+
|
| 65 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
| 66 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 67 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 68 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 69 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 70 |
+
|
| 71 |
+
self.B20 = nn.BatchNorm2d(dd*64)
|
| 72 |
+
self.C20 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 73 |
+
self.C21 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 74 |
+
self.C22 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 75 |
+
self.C23 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 76 |
+
|
| 77 |
+
self.COUT = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
| 78 |
+
|
| 79 |
+
def forward(self, img):
|
| 80 |
+
ACT = F.mish
|
| 81 |
+
|
| 82 |
+
x = self.CIN(img)
|
| 83 |
+
xx = self.Bxx(F.pixel_unshuffle(x, 8))
|
| 84 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 85 |
+
|
| 86 |
+
x = F.pixel_unshuffle(x, 2)
|
| 87 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 88 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 89 |
+
|
| 90 |
+
x = F.pixel_unshuffle(x, 2)
|
| 91 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 92 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 93 |
+
|
| 94 |
+
x = F.pixel_unshuffle(x, 2)
|
| 95 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 96 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 97 |
+
|
| 98 |
+
x = self.COUT(x + xx)
|
| 99 |
+
return torch.sigmoid(x)
|
| 100 |
+
|
| 101 |
+
class R_DECODER(nn.Module):
|
| 102 |
+
def __init__(self, args):
|
| 103 |
+
super().__init__()
|
| 104 |
+
self.args = args
|
| 105 |
+
dd = 8
|
| 106 |
+
self.CIN = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
|
| 107 |
+
|
| 108 |
+
self.B00 = nn.BatchNorm2d(dd*64)
|
| 109 |
+
self.C00 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 110 |
+
self.C01 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 111 |
+
self.C02 = nn.Conv2d(dd*64, 256, kernel_size=3, padding=1)
|
| 112 |
+
self.C03 = nn.Conv2d(256, dd*64, kernel_size=3, padding=1)
|
| 113 |
+
|
| 114 |
+
self.B10 = nn.BatchNorm2d(dd*16)
|
| 115 |
+
self.C10 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 116 |
+
self.C11 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 117 |
+
self.C12 = nn.Conv2d(dd*16, 256, kernel_size=3, padding=1)
|
| 118 |
+
self.C13 = nn.Conv2d(256, dd*16, kernel_size=3, padding=1)
|
| 119 |
+
|
| 120 |
+
self.B20 = nn.BatchNorm2d(dd*4)
|
| 121 |
+
self.C20 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 122 |
+
self.C21 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 123 |
+
self.C22 = nn.Conv2d(dd*4, 256, kernel_size=3, padding=1)
|
| 124 |
+
self.C23 = nn.Conv2d(256, dd*4, kernel_size=3, padding=1)
|
| 125 |
+
|
| 126 |
+
self.Cx0 = nn.Conv2d(dd, 32, kernel_size=3, padding=1)
|
| 127 |
+
self.Cx1 = nn.Conv2d(32, dd, kernel_size=3, padding=1)
|
| 128 |
+
self.COUT = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
| 129 |
+
|
| 130 |
+
def forward(self, code):
|
| 131 |
+
ACT = F.mish
|
| 132 |
+
x = self.CIN(code)
|
| 133 |
+
|
| 134 |
+
x = x + self.C01(ACT(self.C00(ACT(self.B00(x)))))
|
| 135 |
+
x = x + self.C03(ACT(self.C02(x)))
|
| 136 |
+
x = F.pixel_shuffle(x, 2)
|
| 137 |
+
|
| 138 |
+
x = x + self.C11(ACT(self.C10(ACT(self.B10(x)))))
|
| 139 |
+
x = x + self.C13(ACT(self.C12(x)))
|
| 140 |
+
x = F.pixel_shuffle(x, 2)
|
| 141 |
+
|
| 142 |
+
x = x + self.C21(ACT(self.C20(ACT(self.B20(x)))))
|
| 143 |
+
x = x + self.C23(ACT(self.C22(x)))
|
| 144 |
+
x = F.pixel_shuffle(x, 2)
|
| 145 |
+
|
| 146 |
+
x = x + self.Cx1(ACT(self.Cx0(x)))
|
| 147 |
+
x = self.COUT(x)
|
| 148 |
+
|
| 149 |
+
return torch.sigmoid(x)
|
| 150 |
+
else:
|
| 151 |
+
class R_ENCODER(nn.Module):
|
| 152 |
+
def __init__(self, args):
|
| 153 |
+
super().__init__()
|
| 154 |
+
self.args = args
|
| 155 |
+
if 'd16_512' in model_prefix:
|
| 156 |
+
dd, ee, ff = 16, 64, 512
|
| 157 |
+
else:
|
| 158 |
+
dd, ee, ff = 32, 128, 1024
|
| 159 |
+
self.CXX = nn.Conv2d(3, dd, kernel_size=3, padding=1)
|
| 160 |
+
self.BXX = nn.BatchNorm2d(dd)
|
| 161 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
| 162 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
| 163 |
+
self.R0 = ResBlock(dd*4, ff)
|
| 164 |
+
self.R1 = ResBlock(dd*16, ff)
|
| 165 |
+
self.R2 = ResBlock(dd*64, ff)
|
| 166 |
+
self.CZZ = nn.Conv2d(dd*64, args.my_img_bit, kernel_size=3, padding=1)
|
| 167 |
+
|
| 168 |
+
def forward(self, x):
|
| 169 |
+
ACT = F.mish
|
| 170 |
+
x = self.BXX(self.CXX(x))
|
| 171 |
+
|
| 172 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
| 173 |
+
x = F.pixel_unshuffle(x, 2)
|
| 174 |
+
x = self.R0(x)
|
| 175 |
+
x = F.pixel_unshuffle(x, 2)
|
| 176 |
+
x = self.R1(x)
|
| 177 |
+
x = F.pixel_unshuffle(x, 2)
|
| 178 |
+
x = self.R2(x)
|
| 179 |
+
|
| 180 |
+
x = self.CZZ(x)
|
| 181 |
+
return torch.sigmoid(x)
|
| 182 |
+
|
| 183 |
+
class R_DECODER(nn.Module):
|
| 184 |
+
def __init__(self, args):
|
| 185 |
+
super().__init__()
|
| 186 |
+
self.args = args
|
| 187 |
+
if 'd16_512' in model_prefix:
|
| 188 |
+
dd, ee, ff = 16, 64, 512
|
| 189 |
+
else:
|
| 190 |
+
dd, ee, ff = 32, 128, 1024
|
| 191 |
+
self.CZZ = nn.Conv2d(args.my_img_bit, dd*64, kernel_size=3, padding=1)
|
| 192 |
+
self.BZZ = nn.BatchNorm2d(dd*64)
|
| 193 |
+
self.R0 = ResBlock(dd*64, ff)
|
| 194 |
+
self.R1 = ResBlock(dd*16, ff)
|
| 195 |
+
self.R2 = ResBlock(dd*4, ff)
|
| 196 |
+
self.CX0 = nn.Conv2d(dd, ee, kernel_size=3, padding=1)
|
| 197 |
+
self.CX1 = nn.Conv2d(ee, dd, kernel_size=3, padding=1)
|
| 198 |
+
self.CXX = nn.Conv2d(dd, 3, kernel_size=3, padding=1)
|
| 199 |
+
|
| 200 |
+
def forward(self, x):
|
| 201 |
+
ACT = F.mish
|
| 202 |
+
x = self.BZZ(self.CZZ(x))
|
| 203 |
+
|
| 204 |
+
x = self.R0(x)
|
| 205 |
+
x = F.pixel_shuffle(x, 2)
|
| 206 |
+
x = self.R1(x)
|
| 207 |
+
x = F.pixel_shuffle(x, 2)
|
| 208 |
+
x = self.R2(x)
|
| 209 |
+
x = F.pixel_shuffle(x, 2)
|
| 210 |
+
x = x + self.CX1(ACT(self.CX0(x)))
|
| 211 |
+
|
| 212 |
+
x = self.CXX(x)
|
| 213 |
+
return torch.sigmoid(x)
|
| 214 |
|
| 215 |
########################################################################################################
|
| 216 |
|
|
|
|
| 245 |
print(f'Code shape = {zz.shape}\n{zz.cpu().numpy()}\n')
|
| 246 |
|
| 247 |
out = decoder(z)
|
| 248 |
+
vision.utils.save_image(out, f"img_test/{input_img.split('.')[0]}-{model_prefix}.png")
|
img_test/{genshin-out-13bit.png β genshin-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
|
File without changes
|
img_test/genshin-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
|
img_test/{kodim14-modified-out-13bit.png β kodim14-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
|
File without changes
|
img_test/kodim14-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
|
img_test/{kodim19-modified-out-13bit.png β kodim19-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
|
File without changes
|
img_test/kodim19-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
|
img_test/{kodim24-modified-out-13bit.png β kodim24-modified-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
|
File without changes
|
img_test/kodim24-modified-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
|
img_test/{lena-out-13bit.png β lena-out-v7c_d8_256-224-13bit-OB32x0.5-745.png}
RENAMED
|
File without changes
|
img_test/lena-out-v7d_d16_512-224-13bit-OB32x0.5-2487.png
ADDED
|
out-v7d_d16_512-224-13bit-OB32x0.5-2487-D.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c679523f7d74d54d125746a365f27a6cbed0503d48ddcab872f28131866924a
|
| 3 |
+
size 99724745
|
out-v7d_d16_512-224-13bit-OB32x0.5-2487-E.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2bf1bdeff4ebf39e4a96044f91da4cba9e525fc29ac3effd64b349637c7caf93
|
| 3 |
+
size 99704585
|