Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,117 @@
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
license: apache-2.0
|
3 |
---
|
4 |
+
---
|
5 |
+
license: apache-2.0
|
6 |
+
tags:
|
7 |
+
- text2text-generation
|
8 |
+
pipeline_tag: text2text-generation
|
9 |
+
language:
|
10 |
+
- zh
|
11 |
+
- en
|
12 |
+
---
|
13 |
+
|
14 |
+
# GPTQ-for-Bloom
|
15 |
+
|
16 |
+
## Welcome
|
17 |
+
If you find this model helpful, please *like* this model and star us on https://github.com/LianjiaTech/BELLE !
|
18 |
+
|
19 |
+
## Model description
|
20 |
+
8 bits quantization of [BELLE-7B-2M](https://huggingface.co/BelleGroup/BELLE-7B-2M) and [BELLE-7B-0.2M](https://huggingface.co/BelleGroup/BELLE-7B-0.2M) using [GPTQ](https://arxiv.org/abs/2210.17323)
|
21 |
+
|
22 |
+
GPTQ is SOTA one-shot weight quantization method.
|
23 |
+
|
24 |
+
The code of inference can be found in our Github project repository: https://github.com/LianjiaTech/BELLE/tree/main/gptq.
|
25 |
+
|
26 |
+
Basically, 8-bit quantization and 128 groupsize are recommended.
|
27 |
+
|
28 |
+
**This code is based on [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) for [Bloom](https://arxiv.org/pdf/2211.05100.pdf) model**
|
29 |
+
|
30 |
+
## Model list
|
31 |
+
|
32 |
+
| model name | file size | GPU memory usage |
|
33 |
+
| -------------------------------------------------- | ------------------- | ------------------ |
|
34 |
+
| base | 27G | ~28.2G |
|
35 |
+
| bloom7b-2m-8bit-128g.pt | 9.7G | ~11.4G |
|
36 |
+
| bloom7b-2m-4bit-128g.pt | 6.9G | ~8.4G |
|
37 |
+
| bloom7b-0.2m-8bit-128g.pt | 9.7G | ~11.4G |
|
38 |
+
| bloom7b-0.2m-4bit-128g.pt | 6.9G | ~8.4G |
|
39 |
+
|
40 |
+
## Limitations
|
41 |
+
There still exists a few issues in the model trained on current base model and data:
|
42 |
+
|
43 |
+
1. The model might generate factual errors when asked to follow instructions related to facts.
|
44 |
+
|
45 |
+
2. Occasionally generates harmful responses since the model still struggles to identify potential harmful instructions.
|
46 |
+
|
47 |
+
3. Needs improvements on reasoning and coding.
|
48 |
+
|
49 |
+
Since the model still has its limitations, we require developers only use the open-sourced code, data, model and any other artifacts generated via this project for research purposes. Commercial use and other potential harmful use cases are not allowed.
|
50 |
+
|
51 |
+
## Citation
|
52 |
+
|
53 |
+
Please cite us when using our code, data or model.
|
54 |
+
|
55 |
+
```
|
56 |
+
@misc{BELLE,
|
57 |
+
author = {Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Baochang Ma, Xiangang Li},
|
58 |
+
title = {BELLE: Bloom-Enhanced Large Language model Engine },
|
59 |
+
year = {2023},
|
60 |
+
publisher = {GitHub},
|
61 |
+
journal = {GitHub repository},
|
62 |
+
howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
|
63 |
+
}
|
64 |
+
```
|
65 |
+
|
66 |
+
Cite the original BLOOM, Stanford Alpaca and Self-Instruct papers as well!
|
67 |
+
|
68 |
+
***
|
69 |
+
|
70 |
+
# GPTQ-for-Bloom
|
71 |
+
|
72 |
+
## 欢迎
|
73 |
+
如果您觉得此模型对您有帮助,请like此模型并在https://github.com/LianjiaTech/BELLE 项目中star我们!
|
74 |
+
|
75 |
+
## 模型描述
|
76 |
+
对[BELLE-7B-2M](https://huggingface.co/BelleGroup/BELLE-7B-2M) and [BELLE-7B-0.2M](https://huggingface.co/BelleGroup/BELLE-7B-0.2M)进行8 bit(8位)量化。
|
77 |
+
|
78 |
+
GPTQ是目前SOTA的one-shot权重量化方法。
|
79 |
+
|
80 |
+
此模型的推理代码请见https://github.com/LianjiaTech/BELLE/tree/main/gptq .
|
81 |
+
|
82 |
+
一般来说,推荐使用8-bit量化及groupsize = 128.
|
83 |
+
|
84 |
+
**[Bloom](https://arxiv.org/pdf/2211.05100.pdf)模型使用[GPTQ](https://arxiv.org/abs/2210.17323)的推理代码基于[GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa)**
|
85 |
+
|
86 |
+
## 模型列表
|
87 |
+
|
88 |
+
| 模型名称 | 文件大小 | GPU显存占用 |
|
89 |
+
| -------------------------------------------------- | ------------------- | ------------------ |
|
90 |
+
| base | 27G | ~28.2G |
|
91 |
+
| bloom7b-2m-4bit-128g.pt | 5.0G | ~8.0G |
|
92 |
+
|
93 |
+
|
94 |
+
## 局限性和使用限制
|
95 |
+
基于当前数据和基础模型训练得到的SFT模型,在效果上仍存在以下问题:
|
96 |
+
|
97 |
+
1. 在涉及事实性的指令上可能会产生违背事实的错误回答。
|
98 |
+
|
99 |
+
2. 对于具备危害性的指令无法很好的鉴别,由此会产生危害性言论。
|
100 |
+
|
101 |
+
3. 在一些涉及推理、代码等场景下模型的能力仍有待提高。
|
102 |
+
|
103 |
+
基于以上模型局限性,我们要求开发者仅将我们开源的代码、数据、模型及后续用此项目生成的衍生物用于研究目的,不得用于商业,以及其他会对社会带来危害的用途。
|
104 |
+
|
105 |
+
## 引用
|
106 |
+
如果使用本项目的代码、数据或模型,请引用本项目。
|
107 |
+
```
|
108 |
+
@misc{BELLE,
|
109 |
+
author = {Yunjie Ji, Yong Deng, Yan Gong, Yiping Peng, Qiang Niu, Baochang Ma, Xiangang Li},
|
110 |
+
title = {BELLE: Bloom-Enhanced Large Language model Engine },
|
111 |
+
year = {2023},
|
112 |
+
publisher = {GitHub},
|
113 |
+
journal = {GitHub repository},
|
114 |
+
howpublished = {\url{https://github.com/LianjiaTech/BELLE}},
|
115 |
+
}
|
116 |
+
```
|
117 |
+
也请同时引用原始的BLOOM论文、Stanford Alpaca和Self-Instruct论文。
|