Model save
Browse files
README.md
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: llama-1b-sst-2
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# llama-1b-sst-2
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on an unknown dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.3046
|
23 |
+
- Accuracy: 0.8761
|
24 |
+
- F1: 0.8805
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0002
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 128
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 100
|
52 |
+
- num_epochs: 3
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
58 |
+
| No log | 0.1900 | 100 | 0.6003 | 0.6858 | 0.7375 |
|
59 |
+
| No log | 0.3800 | 200 | 0.4186 | 0.8154 | 0.8282 |
|
60 |
+
| No log | 0.5701 | 300 | 0.3709 | 0.8463 | 0.8511 |
|
61 |
+
| No log | 0.7601 | 400 | 0.3565 | 0.8532 | 0.8612 |
|
62 |
+
| 2.0823 | 0.9501 | 500 | 0.3391 | 0.8589 | 0.8591 |
|
63 |
+
| 2.0823 | 1.1387 | 600 | 0.3303 | 0.8681 | 0.8686 |
|
64 |
+
| 2.0823 | 1.3287 | 700 | 0.3285 | 0.8704 | 0.8660 |
|
65 |
+
| 2.0823 | 1.5188 | 800 | 0.3177 | 0.8681 | 0.8715 |
|
66 |
+
| 2.0823 | 1.7088 | 900 | 0.3406 | 0.8567 | 0.8691 |
|
67 |
+
| 1.3266 | 1.8988 | 1000 | 0.3094 | 0.8842 | 0.8843 |
|
68 |
+
| 1.3266 | 2.0874 | 1100 | 0.3051 | 0.8819 | 0.8841 |
|
69 |
+
| 1.3266 | 2.2774 | 1200 | 0.3046 | 0.8784 | 0.8817 |
|
70 |
+
| 1.3266 | 2.4675 | 1300 | 0.3041 | 0.8773 | 0.8810 |
|
71 |
+
| 1.3266 | 2.6575 | 1400 | 0.3034 | 0.8773 | 0.8810 |
|
72 |
+
| 1.2318 | 2.8475 | 1500 | 0.3046 | 0.8761 | 0.8805 |
|
73 |
+
|
74 |
+
|
75 |
+
### Framework versions
|
76 |
+
|
77 |
+
- PEFT 0.14.0
|
78 |
+
- Transformers 4.47.1
|
79 |
+
- Pytorch 2.5.1+cu124
|
80 |
+
- Datasets 3.2.0
|
81 |
+
- Tokenizers 0.21.0
|