Model save
Browse files
README.md
ADDED
@@ -0,0 +1,76 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.2
|
4 |
+
base_model: meta-llama/Llama-3.2-1B-Instruct
|
5 |
+
tags:
|
6 |
+
- generated_from_trainer
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
- f1
|
10 |
+
model-index:
|
11 |
+
- name: llama-1b-offense
|
12 |
+
results: []
|
13 |
+
---
|
14 |
+
|
15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
16 |
+
should probably proofread and complete it, then remove this comment. -->
|
17 |
+
|
18 |
+
# llama-1b-offense
|
19 |
+
|
20 |
+
This model is a fine-tuned version of [meta-llama/Llama-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct) on the None dataset.
|
21 |
+
It achieves the following results on the evaluation set:
|
22 |
+
- Loss: 0.5168
|
23 |
+
- Accuracy: 0.7581
|
24 |
+
- F1: 0.4721
|
25 |
+
|
26 |
+
## Model description
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Intended uses & limitations
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training and evaluation data
|
35 |
+
|
36 |
+
More information needed
|
37 |
+
|
38 |
+
## Training procedure
|
39 |
+
|
40 |
+
### Training hyperparameters
|
41 |
+
|
42 |
+
The following hyperparameters were used during training:
|
43 |
+
- learning_rate: 0.0002
|
44 |
+
- train_batch_size: 32
|
45 |
+
- eval_batch_size: 32
|
46 |
+
- seed: 42
|
47 |
+
- gradient_accumulation_steps: 4
|
48 |
+
- total_train_batch_size: 128
|
49 |
+
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
50 |
+
- lr_scheduler_type: linear
|
51 |
+
- lr_scheduler_warmup_steps: 100
|
52 |
+
- num_epochs: 10
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
|
57 |
+
|:-------------:|:------:|:----:|:---------------:|:--------:|:------:|
|
58 |
+
| No log | 0.9662 | 100 | 0.6670 | 0.6884 | 0.3163 |
|
59 |
+
| No log | 1.9275 | 200 | 0.5841 | 0.7221 | 0.3887 |
|
60 |
+
| No log | 2.8889 | 300 | 0.5471 | 0.7360 | 0.4782 |
|
61 |
+
| No log | 3.8502 | 400 | 0.5380 | 0.7442 | 0.4416 |
|
62 |
+
| 2.5382 | 4.8116 | 500 | 0.5300 | 0.7465 | 0.4834 |
|
63 |
+
| 2.5382 | 5.7729 | 600 | 0.5297 | 0.7488 | 0.4462 |
|
64 |
+
| 2.5382 | 6.7343 | 700 | 0.5198 | 0.75 | 0.4743 |
|
65 |
+
| 2.5382 | 7.6957 | 800 | 0.5160 | 0.7488 | 0.4732 |
|
66 |
+
| 2.5382 | 8.6570 | 900 | 0.5172 | 0.7570 | 0.4814 |
|
67 |
+
| 2.0495 | 9.6184 | 1000 | 0.5168 | 0.7581 | 0.4721 |
|
68 |
+
|
69 |
+
|
70 |
+
### Framework versions
|
71 |
+
|
72 |
+
- PEFT 0.14.0
|
73 |
+
- Transformers 4.47.1
|
74 |
+
- Pytorch 2.5.1+cu124
|
75 |
+
- Datasets 3.2.0
|
76 |
+
- Tokenizers 0.21.0
|